Creating a good climate.

Indoor swimming pool air conditioning | Comfort air conditioning | Process air conditioning

2016

Every innovation begins with a vision.

Our vision is "Minimal ENERGy Application". Since 1980.

1980

Menerga company founded Market launch of the unit series ThermoCond (intelligent swimming pool technology) and AquaCond (heat recovery from waste water)

1983

Market launch of the automatic heat exchanger cleaning system for the AquaCond unit series

1985

Market launch of the Resolair unit series, regenerative heat recovery with over 90% coefficient of performance (COP)

1987

Market launch of the Drysolair unit series (energy-saving air drying)

1988

Replacement of the recuperative aluminium heat exchanger with plastic heat exchangers developed in-house

1991

Market launch of the Dosolair unit series (two-stage recuperative energy recovery) and the Adsolair unit series (cooling without power by means of adiabatic evaporative cooling)

1996

Market launch of the Trisolair unit series (three-stage recuperative energy recovery)

1999

Market launch of the Hybritemp hybrid compact chilled water unit, with integrated recooling system

2000

Menerga Designer: Design of complete air conditioning systems using software developed in-house as cloud solution

2003

Solar sorption-based air conditioning, initial pilot systems

2004

Market launch of energy-efficient compressors with integrated power modulation

2007

New generation of web-enabled control and regulation of ventilation and air conditioning systems

2008

Introduction of the remote control for the ThermoCond 29 unit series using smart phone

2009

Sorpsolair market launch (sorption-based air conditioning – cooling with the sun)

2011

Market launch of the Adcoolair unit series (Green IT) for rooms with high thermal loads

2012

Market launch of Adconair and ThermoCond with counterflow plate heat exchanger. Market launch of energy-efficient plastic regenerators for the Resolair unit series

2013

Menerga becomes part of the Systemair Group. Market launch of fresh water heater without energy from a circulator or heat pump circuit for ThermoCond 38

2014

Market launch of Adiabatic and AdiabaticPro for Adconair 76

Dear Customers and Partners,

We are delighted to be able to present you some of our possible sample configurations within our product range in this catalog. We invite you to get to know our apllications and technical solutions and our special energy philsophy. We have been implementing our philosophy, "Creating a good indoor climate – through

Minimal ENERGy Application", on an everyday basis for over 35 years. Through continuous ongoing development, we are furthermore steadily redefining the state of the art.

Get to know a remarkable company with special technology. Join us in creating a good climate - we look forward to it!

Ralf Eichentopf and Frank Ernst Managing Directors of Menerga

ADDITIONAL INFORMATION

Innovation overview	2
Menerga philosophy	4
Certificates	6
Application areas	8
Technical details	9
Modular system	10
Special solutions	11
Unit housing MB 50	12
Quality pledge	14
Indoor and outdoor units	16
Technical Service	17
Unit options	106
Glossary	108
Unit functions	109
Reference projects	110
Unit code	115

lled D	ThermoCond 19/23/	29	oCon /ate
j pool itionin	Comfort through intelligent swimming pool technology	Page 19	Therm
Swimming air cond	ThermoCond 38/39 Good climate for public indoor swimming pools	Page 29	ThermoCond public
	• Trisolair 52/59 Three-stage recuperative heat recovery	Page 41	Trisolair
Statistics • ThermoCond 19/2 Comfort through intelligent swimming pool technology • ThermoCond 38/2 Good climate for public indoor swimming pools • Trisolair 52/59 Three-stage recuperative heat recovery • Dosolair 54 Two-stage recuperative heat recovery • Adsolair 56/58 Cooling without power consumption • Resolair 62/64/6 Regenerative heat recovery • Sorpsolair 72/73 Cooling with the sun • Adconair 76 Counterflow heat recovery • AduaCond 44 Heat recovery from waste water • Drysolair 11 Energy-saving air drying • Frecolair 14 Free cooling for rooms with high thermal loading • Adcoolair 75 Green IT • Hybritemp 97/98 Compact chilled water units	• Dosolair 54 Two-stage recuperative heat recovery	Page 46	Dosolair
conditioning	Adsolair 56/58 Cooling without power consumption	Page 50	Adsolair
Comfort air	Resolair 62/64/66/6 Regenerative heat recovery	58/65 Page 58	Resolair
	Sorpsolair 72/73 Cooling with the sun	Page 74	Sorpsolair
	Adconair 76 Counterflow heat recovery	Page 78	Adconair
ess	► AquaCond 44 Heat recovery from waste water	Page 84	AquaCond
water / proc ed water	• Drysolair 11 Energy-saving air drying	Page 88	Drysolair
rom waste v ontrol / chill	• Frecolair 14 Free cooling for rooms with high thermal loading	Page 92	Frecolair
at recovery fi climate co	Adcoolair 75 Green IT	Page 97	Adcoolair
He	Hybritemp 97/98 Compact chilled water units	Page 101	Hybritemp
	 Slot diffusor For private and public swimming pool halls 	Page	

38

About Menerga Minimal Energy Application

We supply air conditioning systems individually designed for your requirements. Our philosophy, "Creating a good indoor climate – through Minimal ENERGy Application", is something we have succeeded in every single day, since the company was founded over 35 years ago. We are proud to be part of the international successful Systemair group since 2013.

Our systems are first-class, intelligent works of engineering and handcraft.

They remain reliable in operation for many, many years, significantly reducing operating costs. How is this possible? In the basic design stages we already integrate all the components for air conditioning, such as the ventilation, heating and refrigeration systems, and equip everything with an intelligent control and regulation system. Every system is fully tested before delivery within the framework of a test run. The compact units are always delivered "ready for connection". At the building site, they are connected up and made operational in just a few work stages. With over 40,000 systems installed worldwide, we cover almost every area of application. We do not only sell the units, but also offer you our many years of experience. When looking for the best solution, we jointly analyse the specific conditions at the location together with you. for the optimal solution we ask a lot of questions. Might it also be possible to use an alternative source of energy in order

to reduce the operating costs even further? In this manner, we and our partners have jointly implemented countless projects which have received many awards for beeing energy efficient. We are proud of this. But what we really like about this is the know-how from jointly developed solutions, which allows operators and investors to save hard earned money – day after day, month after month, and year after year. The investment costs are amortised within a short period. We will be happy to produce reference lists for the building types in which you are interested in. And in the event that you surprise us with a totally new project: We are convinced to find the right solution for you. With our eyes sharpened by countless special projects, e.g. the "ALMA" telescope facility in the Atacama desert or the "Princess Elisabeth Station" at the South Pole, we will be happy to accept the challenge.

Associations and guidelines Menerga is active and certified!

Menerga participates in the Eurovent Certified Performance programm for Menerga Air range. Check ongoing validity of certificate: www.eurovent-certification.com or www.certiflash.com

Eurovent

Most of our ventilation units are as standard version Eurovent certified. This means the following series of the Menerga Air range with 50 mm panels and filter classes up to F7/F9: ThermoCond 38/39, Drysolair 11, Adcoolair 75, Trisolair 52/59, Dosolair 54, Adsolair 56/58, Resolair 62/64/66/68, Sorpsolair 72/73 and Adconair 76

Passive House Institute

The complete Resolair 64 series and Adconair up to 76 16 01 are officially certified components of the Passive House Institute. They are ideally suitable for passive houses and all other low energy buildings.

ategory: Heat r anufacturer: Mener 45473	eco ga (Mŭl	Certificate Certified Passive Hou For cool, temperate climate	Passive House Institute Dr. Wolfgang Feist 64283 Darmstadt GERMANY		
GERM roduct name: Resolu his certificate was av riteria:	AN' air 6 vard	Category: Heat r Manufacturer: Mener 45473 GERN Product name: Adcor	ecovery unit ga GmbH Mülheim an der Ruhr, IANY nair 76 10 01	Certified for air flow rates of 3000 – 4500 m³/h At an external pressur	
nermal comfort	Θ _m at (This certificate was av criteria:	varded based on the following	of 316 Pa ¹⁾ Requirements non residential buildings	
ective heat recovery e	η _{is}	Thermal comfort	Θ _{mapply air} ≥ 16.5 °C at θ _{outdoor air} = -10 °C	(Therewith device also applicable for	
sumption		Effective heat recovery	n _{piRatt} ≥ 75%	residential building)	
ormance number	21	Electric power	Pet \$ 0.45 Wh/m ²	η_{ня,ен} 92%	
ghtness	Inte	consumption		(4500 m ³ /h)	
	rate	Performance number	≥ 10	пылан 94%	
nrina and adjustability	3% Air	Airtightness	Interior and exterior air leakage rates less than 3% of nominal air flow rate	(3000 m ³ /h)	
and ing and adjustability	Aut	Balancing and adjustability	Air flow balancing possible: yes		
nd insulation	It is	Sound insulation	Automated air now balancing: yes It is assumed that large ventilation	Electric power	
	bui dox cer		units are installed in a separate building services room. Sound levels are documented in the appendix of this	0.42 Wh/m ³	
oor air quality	Ou Ext	Indoor air quality	Outdoor air filter F7	Performance	
st protection	no	Frostprotection	Frost protection required	11	
 Available pressure difference w Additional components (e.g. he accordingly. 	th inst der col		Different strategies are mentioned in the appendix of this certificate		
 Please take into account that in transfer of more than 2% of each tom norms with a high degree apacitic. Regenerative heat recovery – a her information can be found in th rw.passivehouse.cc 	this re aust ai of cont pplicat in app m	 Available pressure differ Additional components (difference according). Further information can be found 	ance with installed filter (24 Pa. e.g. heater coll) decrease the available pressure in the appendix of this certificate.	?	

Ecodesign directive 2016/2018

We are ready!

ATEX

The ATEX directive currently includes two directives in the field of explosion protection, the ATEX Directive 94/9/EC and the ATEX Workplace Directive 1999/92/EC. On request we produce your unit according the ATEX regulations for explosion-hazardous areas.

Manufacturers Association "RLT Hersteller Verband"

Menerga is a member of the german Manufacturers Association for AHU "Herstellerverband Raumlufttechnische Geräte e.V.". Aim of this Association is to develop air handling units at the highest technical level as well as standardization work and technical recommendations.

Моге...

Of course we also have all common other certificates such as TÜV type examinations, hygiene certificates, ISO 9001 and more.

Please contact us - we are happy to send you an overview or copies of the certificates you might require.

With the new regulation (EU) No. 1253/2014 coming into entry in December 2014 the implementation of the Ecodesign Directive 2009/125/EC is set and with this the requirements for the environmentally friendly design of AHUS.

In addition to basic requirements for the design of AHUs the Ecodesign Directive defines in two stages (01.01.2016 and

01.01.2018) the minimum values for the efficiency of the heat recovery system and maximum power consumption of the fans. Aim is to reduce the energy consumption of the AHU's during their lifespan. Ecodesign Guideline aims for reducing the primary energy consumption of the whole product group for more than 60% until 2025 compared to the stage of 2010.

Due to our strict energy efficiency focus we are not only ready for this - we are prepared for this step since 1980! Most of our units fulfill the requirements of the directive from January 2018 already. With Menerga you can now already plan the projects for the year 2018.

Menerga core competencies Our areas of application

INDOOR SWIMMING POOL AIR CONDITIONING

Private swimming pools, public swimming pool halls, adventure pools, sports pools, saline baths, hotel pools, school pools, therapeutic pools and many more. Last not least: heat recovery from waste water.

The air conditioning of swimming pool halls is one of the most challenging areas for air conditioning. Here we started 30 years ago, this is where we grew up, and we are now market leaders and innovation pioneers. Our special competency lies in the high heat recovery efficiency lowering operating costs, while robust system design overcomes adverse conditions.

COMFORT AIR CONDITIONING

Low-energy buildings, offices, museums, sports facilities, schools, clinics, hotels, banks, historical buildings and many more.

With comfort air conditioning, the focus is on people. Our technology is based on the respective requirements of a project, but simultaneously always looks for the most efficient method with the lowest consumption of energy. For example, we cool with water in order to save electrical energy, or make use of sorption-based air conditioning, with which you can carry out dehumidification by means of heat, e.g. from solar thermal energy or process waste heat. It is even possible to store excess solar heat for an indefinite period without any losses for the purposes of dehumidification.

PROCESS AIR CONDITIONING AND CHILLED WATER

Air conditioning of data centres, industrial drying, process cooling, air conditioning for warehouses, cold water generation and much more.

Last not least: heat recovery from waste water.

The process air conditioning system must ensure that defined air conditions prevail in a defined situation. Menerga systems guarantee reliable drying, cooling or heating. In the field of chilled water, our systems reliably provide the desired water conditions. Saving energy through the use of intelligent technology is our top priority in this sector as well.

SPECIAL SOLUTIONS

Research projects, special applications

Challenges and unusual projects are the milestones of Menerga's company history. Since the foundation of our company, we have designed individual solutions for many of our customers. We enjoy taking on challenging projects, knowing that these are the projects that bring valuable experience and which also improve the quality of our "standard" systems.

Quality: Menerga systems are developed in Germany and focus on highest quality.

Profiles and frames: the equipment design is based on a long-lasting, robust AU steel frame. Housing designs are available up to the highest thermal bridge class TB1.

3 Control and regulation: our systems are ready to connect upon delivery. The intelligent control and regulation equipment guarantees that the system always performs optimally.

Filters: all HVAC systems are equipped with an optimised filtration system, to protect both persons and technology.

Heating or cooling coils: for covering the transmission heating or cooling requirement.

⁶ Fans: energy-efficient EC fan motor units.

Indirect adiabatic evaporative cooling: for cooling purposes, we use natural processes wherever possible, e.g. cooling with water.

⁸ Heat exchangers: we use polypropylene instead of aluminium without any reduction in efficiency and thus minimise both the weight of the system and CO, emissions during production. **Droplet eliminator:** efficient mist collectors reliably eliminate aerosols from the air, and prevent moisture from being carried into the air ducts.

Air damper systems: for precise distribution of the air flow.

Air distribution: intelligent bypass designs for efficient operation all year round.

¹² Compressor refrigeration system / heat pump: corresponds to the regulations of DIN EN 378 and is type-tested and certified in accordance with the pressure equipment directive. An individual acceptance is not required.

Always the right solution Intelligent modular system

st

In over 30 years of experience in air conditioning and with over 40,000 systems installed worldwide, we have learned a lot. We have adapted our system series to the requirements of the projects. This process has resulted in the creation of a modular system, that allows you to have your system individually adapted to your project.

Selecting a system series allows you to choose the basic orientation of the air conditioning system. Systems in the Adsolair series, for example, are equipped with adiabatic evaporative cooling. If you want to use solar thermal energy for dehumidification, the right choice would be the Sorpsolair series. And in swimming pool halls, systems from the Thermo-Cond series create a good climate.

After the basic selection process of choosing a series, you can adapt each unit to your individual requirements. This allows you to choose, e.g. air connection fitting positions or the position of the controls cabinet. In this step, the unit is specifically adapted already to the requirements of the plant room, and the particular circumstances onsite.

3rd

And even more is possible, of course. For systems with heating coils the number of pipe rows and hence the heating capacity can be varied for example. Or you can select different filter quality categories, depending on intended use. Additional unit components can be integrated and further adaptations can be implemented, too.

An overview of the most important options can be found on the pages 104 - 105. The fact that we are still using our regular product range, even where there are profound variations, shows you that we have intelligently combined the right modules from the very start.

When it comes to special requirements, we are pros If necessary, we can build them round

We will find the perfect solution for any project. And if the requirements are ever too special, then we just make our systems even more special. We are the professionals for highly specialised systems and adapt our units faster than anyone else to meet special requirements. An example of this is the world-famous Anna Amalia library in Weimar, an UNESCO World Cultural Heritage Site. The air conditioning for the historically unique collection of books utilises Menerga systems. One of the Resolair units was installed in the cellar vaults, below the book tower. The round tower is approximately 15 metres high, has a wooden spiral staircase and is one of the highlights in the library's ensemble. The cellar vaults below are likewise round, and can only be reached via a single, narrow corridor. The special challenge was sensibly fitting the system into the round

cellar. In cooperation with the installer, the air conditioning unit was divided into compact transportation units, carried in through a narrow hatch at the rear of the tower and installed. The special feature is the semi-round design of the system, which is certainly unique. A nice reference project for the performance of Menerga, but only one example of the many possibilities. We are capable of reacting guickly and flexibly to meet your very specific requirements and onsite circumstances. In addition to the many options presented to you by our product range, we can also develop entirely new unit concepts for your special requirements. As, for example, we did for the Felsland Dahn leisure pool. The intention was to wisely make use of the excess heat from a combined heat and power system – and so our engineers developed the first sorption-based

swimming pool dehumidification system in Germany. The result is a high-performance, reliable system that reduces the operating costs by approx. 40,000 euros per year. We have countless examples of such special systems. Just ask us! We develop and manufacture these special systems for you. Because we can. For over 30 years now.

MB 50 unit housing For all units in the Menerga Air range

Measured values according to DIN EN 1886Casing stabilityD1 (M)Air tightness -400 PaL1 (M)Air tightness +700 PaL1 (M)Filter bypass leakageF7 (M), optional F9 (M)Heat transferT2Thermal bridge factorTB1

Eurovent 2014

Use of the MB 50 housing	Unit standard	Menerga Air
ThermoCond 19	-	•
ThermoCond 23	-	•
ThermoCond 29	-	•
ThermoCond 38	•	•
ThermoCond 39	•	•
Drysolair 11	-	•
Adcoolair 75	-	•
Trisolair 52/59	-	•
Dosolair 54	•	•
Adsolair 56/58	•	•
Resolair 62/66		•
Resolair 64/68	•	•
Sorpsolair 72/73		
Adconair 76	•	•

Thermal insulation shell

The PUR thermal insulation shell reduces heat losses and hence energy expenditure. This means the best possible avoidance of thermal bridges, and virtually no condensation on the outside of the unit.

Thermal bridge factor TB1

Unit cover

Unit cover as a dual-shell sandwich element with a frame profile around the edge. Panel thickness 50 mm. Inside and outside sheet panels galvanised with a polyester coating. Corrosion category III. Colour RAL 2004 or RAL 7035. Sheet thickness 0.75 mm, optionally 1.5 mm. Inspection glasses as required. All unit covers that can be opened have integrated, replaceable seals. Above a clear unit height of 1.3 m, this is designed as a door.

Maximum leakproofness, Heat transfer T2

Hinges/fasteners

In areas requiring maintenance on the operating side, 180° 2D hinges with door fasteners are used. Door fastener with handle, in areas of overpressure with additional pressure relief and safety restraint to prevent bursting open. The door fasteners on doors with dangerous components can be locked (box spanner).

Simple to use, highest safety level

Relates to the Menerga Air design. Check the validity of the certificate: www.eurovent-certification.com or www.certiflash.com

Cover locks

00

In areas not requiring maintenance on the operating side, covers are secured with plastic clamp fasteners, which are applied to the exterior of the unit and do not penetrate the unit casing. Additional handles make handling easier.

Lower leakage, simple to use

Profile design

Housing profile design made from galvanised steel, guaranteeing the highest stability.

Robust, durable design

Base

Circumferential base frame made from galvanised steel, standard height 120 mm. Other sizes also available. In the weatherproof design, welded base in a single piece or a few sections.

Extremely durable

Design of the housing, view from above:

6

🔺 🔇

"On the Top" since 35 years! The Menerga quality pledge.

Control and regulation have always been an integral part of our units and ensure an optimum of operation with a focus on highest energy efficiency.

Outside air temperature sensor including GSM-router wirelessly transfers unit values and assures a connection in real-time.

Bus connection of sensors and actuators create a failure-free connection, reliable measurements and thanks to integrated LED's they even bring light into the unit.

Level detector including a gyro sensor in the water tank of the adiabatic evaporative cooling system is constantly monitoring the water level. Extremely lowmaintenance!

> **CNC-bended pipework** for all compression cooling plants. That means significantly less solder connections and thus fewer weak spots.

Smartphone solutions for remote control, worldwide energy and fault monitoring.

menerga

menerga

Solid and thermal bridge free housing with a steel frame, thermal cladding and for all outdoor units a weatherproof steel roof.

Indirect adiabatic evaporative **cooling** inside the heat exchanger. Hollow cone nozzles guarantee an extremely fine, homogeneous distribution of the water in the return air.

Microchannel condensers

reduce the CO2-emmission due to a reduced refrigerant volume of $\frac{2}{3}$ and a halved airside pressure drop.

Unit housing MB 50
DUN - EN 100 (

as per DIN EN 1886: Thermal transmittance: T2 Thermal bridge factor: TB1 Mechanical rigidity: D1 Air tightness class: L1 Filter bypass leakage class: up to F9

Coated surface in "wet zones" of the unit.

Ultra durable heat exchangers, that are air- as well as water-tight in all areas. We use corrosion-free polypropylene and first class processing.

Fan walls with IE4 class motors for better performance and safety and compact units at the same time

Recuperation tank, easy access to the tank of the adiabatic cooling system facilitates service and ensure a complete draining of the system after operation.

Indoor and outdoor units Always appropriately equipped

Outdoor installation

- Panel colour according to RAL 7035 light grey
- Galvanised steel base, welded
- Weather-resistant unit roof with drip edge
- Delivery in smallest possible numer of transportation units for simple installation
- Controls cabinet in the building, terminal box in the unit
- Condensate drainage with trace heating system
- Delivery complete with maintenance switch in the unit

Outdoor and indoor units are ideally equipped for their respective purposes. All outdoor units for example are equipped so that pipelines containing water cannot freeze during winter. A welded base frame increases stability. The maintenance switch mounted directly in the unit simplifies maintenance work, as it is possible to switch off fan motors directly at the unit location. Sor, for units with integrated control and regulation system, this function is fully integrated into the unit before it leaves the factory, whereas usually the installer would have to take care about this onsite. For indoor units on the other hand the focus is on the simplest possible installation of the units

into the plant room. Depending on the space available and the size of the unit, the controls cabinet may be mounted directly on the unit, or can be installed onto a wall. Of course you decide on the details and features of your indoor or outdoor unit. We will be happy to advise you.

Indoor installation

- Panel colour according to RAL 2004 pure orange
- Galvanised steel base, bolted, 120 mm or unit feet
- Delivery in compact transportation units for simple installation into the building
- Controls cabinet mounted on the unit or on a wall
- Delivery with main switch/ maintenance switch on controls cabinet

Experts at your service Technical Customer Service

Experts at your service, anytime, anywhere. With a comprehensive range of services and an extensive service network throughout Europe, the Menerga Technical Service guarantees the most economical and advanced services over the entire life cycle of your system, from the day of commissioning onwards.

More than 120 service technicians at various service centres, and 40 service engineers at the Menerga locations, provide a professional all-inclusive service with the objective of achieving high availability of the systems and a maximum of efficiency. The range of services offered by the Menerga Technical Service covers everything from the test run at the factory and on-site commissioning, through periodic servicing, repairs, remote maintenance and remote diagnosis by means of direct dial-up options, to the refurbishment and optimisation of the systems. And this all not only for Menerga units!

We supply you with the right service concept, customer-specific and applicationspecific. In the event of an emergency, you can reach us 24 hours a day on the following telephone number: +49 208 9981-199

Air conditioning unit with cross-counterflow heat exchanger for private swimming pool halls

ThermoCond 19 and 29

AIR VOLUME FLOW: 1,100 - 3,500 m³/h

At a glance:

Dehumidifies, ventilates and heats Corrosion-free heat exchanger made from polypropylene Two-stage recuperative heat recovery Energy-saving EC fans Integrated heat pump (ThermoCond 29) **Constantly regulated recirculation** air heating damper Variable air duct connections Compact design for minimal space requirements Integrated control and regulation system, compatible with all conventional building management systems **Optional: operation via** smartphone or tablet

Devices of the series 19 and 29 dehumidify and heat the swimming pool hall and they reduce a possible concentration of harmful substances in the air. The devices are multifunctional compact systems with integrated control and regulation. ThermoCond 19 is suitable for swimming halls with lower heating requirements. ThermoCond 29 is

equipped with an integrated heat pump. This increases the overall efficiency of the system and enables the dehumidification of the pool hall air in recirculation mode. The design ensures the cleanability according to VDI 6022.

Further performance parameters and options:

- Filtering the air in any operating mode
- pumped hot water air heater
- sound-optimised plastic impellers for even quieter operation (from 19 20 01)
- Individually controllable performance parameters
- Complete unit, ready to connect, contains all structural elements for air conditioning swimming pool hall air, including all control and regulation fittings
- Intensive quality inspection with factory test run

Options

- bypass damper
- water/air temperature interconnection
- design complies with VDI 6022
- Pool water condenser (ThermoCond 29)
- Domestic heat pump coupling (ThermoCond 29)
- remote maintenance
- and many more

Functional description

Dehumidification using outside air in winter

ThermoCond19: The swimming pool hall is dehumidified through the addition of outside air to the recirculated air volume flow. The proportion of outside air is continuously and automatically adjusted, depending on the current evaporation of water (occupancy level of the swimming pool hall), as well as the outside air humidity. This If the waste heat recovery is not sufficient for achieving the desired supply air temperature, the supply air is

Dehumidification using outside air in summer

In case of rising outside air humidity, the recirculation air damper is continuously closing as required. When the outside air

Recirculating air dehumidification (ThermoCond 29)

The air is dehumidified in the evaporator of the heat pump, this process is boosted by the pre-cooling effect in the heat exchanger. The air that has already cooled down and been dried is preheated in the heat exchanger by the return air from the swimming pool hall. On the other side of the heat exchanger, the transmission of heat produces a precooling effect, lowering the temperature of the drawn-in hu-

Domestic heat pump operation (ThermoCond 29)

An existing domestic heat pump can be used for energy-efficient heating of the swimming pool hall air. The domestic heat pump is connected to the heating coil. Typically, the low flow temperatures of the domestic heat pump are not sufficient for heating the swimming pool hall air – the heating coil is therefore

Recirculating Air Operation (heating)

If no requirements are placed on temperature regulation or dehumidification when the device is in standby mode, the system operates only in recirculation mode with reduced air volume flow. The air circulation in the swimming pool hall is guaranteed. If heating is required, the return air is heated up using the heating coil to achieve the supply air temperature set-point.

reheated in the heating coil.

ThermoCond29: A large proportion of the sensitive and latent heat is recovered from the return air, and is transferred to the supply air in the cross-counterflow heat exchanger and evaporator. If the heat output of the heat pump is not sufficient, the supply air will be reheated using the heating coil. Excess heat can be transferred to the optionally available pool water condenser for heating the pool water.

humidity is high, the damper closes completely. The system works at 100% outside air / exhaust air operation through the heat exchanger.

mid and warm air from the swimming pool hall near to its dew point. The preheated, dehumidified air is then mixed with a proportion of untreated recirculation air, is reheated at the condenser of the heat pump using the heat extracted during the dehumidification process, and is returned to the swimming pool hall as supply air. The heat pump is optimally designed, with a dehumidification energy requirement < 0.25 kWh/kg. If required, the supply air will be reheated using the heating coil.

installed upstream of the air condenser of the integrated heat pump. The domestic heat pump can so be operated with an optimal COP without a change in the low flow temperatures. In combination, the two systems heat the supply air to the desired temperature level.

All images show ThermoCond 29 with heat pump.

 Option: pool water condenser
 Option: domestic heat pump operation

ThermoCond private

ThermoCond Type 19 and 29

System dimensions and weights

Unit feet 100 mm Optional: adjustable feet from 100 to 120 mm

In the case of controls cabinet, folding on device: cabinet is folded on the front end for transportation. This reduces the transportation length by approx. 250 mm.

Return and exhaust air duct connection possible on top of unit. Mirror-image design possible.

Unit type	L	W 1	H ²	W1	W2	H1	А	C	D	E	Weight Type 19	Weight Type 29
19 11 01	1,530	570	1,590	350	200	1,370	215	150	150	135	410	460
19 15 01	1,530	730	1,590	500	200	1,370	215	150	150	135	440	500
19 20 01	1,690	730	1,910	500	300	1,690	80	105	120	105	540	600
19 25 01	1,690	890	1,910	600	300	1,690	80	105	120	105	610	680
19 35 01	1,690	1,210	1,910	920	300	1,690	80	105	120	105	720	830

Controls cabinet

Unit Type	H x W x D	Position at unit
19 11 01	600 x 600 x 200	SA/RA side
19 15 01	600 x 600 x 200	SA/RA side
19 20 01	600 x 600 x 200	SA/RA side
19 25 01	600 x 600 x 200	SA/RA side
19 35 01	600 x 600 x 200	SA/RA side

For service work, a clearance corresponding to dimension B is required on the operating side of the unit. If dimension W is smaller than one metre, please leave a clearance of one metre.

Please comply with the dimensions for body size, air duct connections and electrical controls cabinet.

Partitioning of unit for smaller apertures possible (at extra cost).

All lengths are given in mm, weights in kg.

1 Door fitting assembly increase unit width

- by 25 mm each operating side incl. 100 mm unit feet,
- incl. 120 mm duct connection

Technical specifications and services ThermoCond 19

Unit Type		19 11 01	19 15 01	19 20 01	19 25 01	19 35 01		
Optimum flow rate	m³/h	1,100	1,500	2,000	2,500	3,500		
Dehumidification capacity according to VDI 2089	kg/h	7.1	9.7	12.9	16.2	22.6		
Total electrical power rating ¹	kW	0.94	1.05	1.45	1.65	2.66		
Max. current consumption ¹	А	3.3	3.3	3.8	3.8	7.6		
Operating voltage			3/	N / PE 400 V 50) Hz			
Ext. pressure losses								
Supply and fresh air channel	Pa	300	300	300	300	300		
Return and exhaust air channel	Pa	300	300	300	300	300		
Sound power level ²								
Supply air vent	dB(A)	79	78	68	66	73		
RA connection	dB(A)	69	67	59	60	61		
Outside air vent	dB(A)	65	63	54	54	59		
EA connection	dB(A)	71	65	58	58	61		
Acoustic pressure at a distance of 1 m from the device ²	dB(A)	63	59	49	48	54		
Fan units								
Rated motor input for supply air ³	kW	0.55	0.60	0.81	0.92	1.54		
Rated motor input for return air ³	kW	0.39	0.45	0.64	0.73	1.12		
Rated motor input for supply air recirc mode ³	kW	0.22	0.26	0.36	0.48	0.64		
Rated motor input for return air recirc mode ³	kW	0.22	0.26	0.36	0.48	0.64		
SFP category (supply air return air) recirc mode		2 2	2 2	2 2	2 2	2 2		
Nominal rating supply air return air	kW	1.0 1.0	1.0 1.0	1.2 1.2	1.2 1.2	2.4 2.4		
Filtration according to DIN EN 779								
Outside air			M5					
Return air				M5				
LPHW								
Heating capacity ⁴ recirc mode	kW	8.5	12.1	14.6	18.9	26.6		
Heating capacity ⁴ OA-EA operation	kW	10.4	14.9	17.9	23.2	32.3		
Water flow rates and pressure losses								
LPHW	m³/h kPa	0.46 3.9	0.65 8.6	0.78 4.2	1.01 7.7	1.41 7.1		
LPHW valve	m³/h kPa	0.46 8.1	0.65 16.6	0.78 9.8	1.01 16.5	1.41 12.5		
Connections								
LPHW connection	DN	15	15	20	20	20		
LPHW control valve connection	DN	10	10	15	15	20		
Condensate drainage	DN	20	20	20	20	20		
Floor drain	DN	20	20	20	20	20		

Specifications of technical data relate to the optimum flow rate and return air condition 30° C / 54% r.h., outside air condition 15° C / 84% r.h. and standard density (1.204 kg/m³), unless otherwise specified.

depends on configuration of measurement and control system/unit at 250 Hz mid-band frequency with average filter contamination FL/RL = 70/50° C, SA \approx 50° C 1 2 3 5

Please seek approval of technical data and specifications prior to start of the planning process.

Technical specifications and services ThermoCond 29

Unit Type		29 11 01	29 15 01	29 20 01	29 25 01	29 35 01
Optimum flow rate	m³/h	1,100	1,500	2,000	2,500	3,500
Dehumidification capacity according to VDI 2089	kg/h	7.1	9.7	12.9	16.2	22.6
Dehumidification capacity in recirc mode	kg/h	4.6	5.2	6.9	8.5	12.0
Heating capacity of heat pump ¹	COP	5.14	6.42	5.82	6.61	6.14
Total electrical power rating ²	kW	1.07	1.18	1.64	1.84	3.04
Max. current consumption ²	А	7.5	7.5	8.9	10.1	17.6
Operating voltage			3/	N / PE 400 V 50) Hz	
Ext. pressure losses						
Supply and fresh air channel	Pa	300	300	300	300	300
Return and exhaust air channel	Pa	300	300	300	300	300
Sound power level ³						
Supply air vent	dB(A)	76	77	66	64	71
RA connection	dB(A)	71	70	61	61	64
Outside air vent	dB(A)	66	64	56	55	60
EA connection	dB(A)	69	66	58	56	61
Acoustic pressure at a distance of 1 m from the device ³	dB(A)	62	61	51	49	56
Fan units						
Rated motor input for supply air ⁴	kW	0.60	0.65	0.89	1.00	1.70
Rated motor input for return air ⁴	kW	0.47	0.53	0.75	0.84	1.34
Rated motor input for supply air recirc dehumidification ⁴	kW	0.29	0.33	0.47	0.58	0.86
Rated motor input for return air recirc dehumidification ⁴	kW	0.35	0.40	0.57	0.68	1.06
SFP category (supply air return air) recirc dehumidification		2 2	1 2	1 2	1 2	2 2
Nominal rating supply air return air	kW	1.0 1.0	1.0 1.0	1.2 1.2	1.2 1.2	2.4 2.4
Integrated heat pump						
Filling volume of refrigerant type R407C ⁵ (without with PWC)	kg	2.0 3.0	2.0 4.0	3.0 4.0	3.0 4.0	4.0 5.0
Heating capacity heat pump	kW	7.2	7.7	9.9	11.9	17.2
Rated compressor input for recirc air dehumidification	kW	1.4	1.3	1.7	1.9	2.9
Rated compressor input for OA-EA operation 7	kW	1.4	1.2	1.7	1.8	2.8
Filtration according to DIN EN 779						
Outside air				M5		
Return air				M5		
LPHW						
Heating capacity ⁶ recirc mode	kW	6.7	9.1	11.7	14.6	21.3
Heating capacity ⁶ OA-EA operation	kW	2.9	5.7	7.4	9.7	13.7
Water flow rate and pressure losses						
LPHW	m³/h kPa	0.13 1.6	0.25 2.2	0.32 3.9	0.42 3.7	0.60 8.4
LPHW (pump warm water) valve	m³/h kPa	0.13 1.6	0.25 2.5	0.32 4.1	0.42 7.0	0.60 14.0
Pool water condenser 7 (supplementary equipment)						
Heating power ⁸	kW	6.4	7.0	9.0	11.0	15.5
Spread of pool water temperature	К	7.8	6.7	7.0	6.8	6.7
Pool water volume flow rate	m³/h	0.7	0.9	1.1	1.4	2.0
water side pressure loss	kPa	12.3	14.1	12.0	12.5	15.2
Connections						
LPHW connection	DN	15	15	15	15	15
LPHW control valve connection	DN	10	10	10	10	15
Condensate drainage	DN	20	20	20	20	20
Floor drain	DN	20	20	20	20	20
PWC connection ⁹	DN	20	20	25	25	25

Specifications of technical data relate to the optimum flow rate and return air condition 30° C / 54% r.h., outside air condition 15° C / 84% r.h. and standard density (1.204 kg/m³), unless otherwise specified.

3 at 250 Hz mid-band frequency

a t 250 Hz mid-band trequency
with average filter contamination
where domestic heat pump coupling: Refrigerant type = R134a; filling volumes vary
FL/RL = 70/50° C, SA ≈ 50° C
heat emission full and proportional; when water inlet temp. 28° C
dehumidifying in recirc mode with PWC

9 for units with pool water condensers

Please seek approval of technical data and specifications prior to start of the planning process.

1 2

dehumidifying in recirc mode without PWC depends on configuration of measurement and control system/unit

Air conditioning unit with cross-counterflow-cross heat exchanger for private swimming pool halls

ThermoCond 23

AIR VOLUME FLOW: 1,600 - 5,000 m³/h

At a glance:

- Dehumidifies, ventilates and heats
- Corrosion-free heat exchanger made from polypropylene
- Over 80% temperature efficiency through three-stage recuperative heat recovery
- Energy-saving EC fans

.....

.....

.....

- Constantly regulated recirculation air heating damper
- Flat design, ideal for integration into pool periphery

Integrated control and regulation system, compatible with all conventional building management systems

 Optional: operation via smartphone or tablet Devices of the series 23 dehumidify and heat the swimming pool hall and they reduce a possible concentration of harmful substances in the air. The devices are multifunctional compact systems with integrated control and regulation. ThermoCond 23 achieves a very high heat recovery rate based on a special heat exchanger. The design ensures the cleanability according to VDI 6022.

Further performance parameters and options:

- Filtering the air in any operating mode
- Pumped hot water air heater
- Individually controllable performance parameters
- Complete unit, ready to connect, contains all structural elements for air conditioning swimming pool hall air, including all control and regulation fittings
- Bypass damper

 Intensive quality inspection with factory test run

Options

- Water/air temperature interconnection
- Remote maintenance
- And many more

Dehumidification using outside air in winter

A large proportion of the sensitive and latent heat is recovered from the return

Recirculating Air Operation (heating)

If no requirements are placed on temperature regulation or dehumidification when the device is in standby mode, the system operates only in recirculating mode with reduced air volume flow. The air circulation in the swimming pool hall is guaranteed. If heating is required, the return air is heated to the supply air temperature as required using the heating coil.

Dehumidification in the transitional period

When outside air temperatures rise, the output of the heating coil can be reduced. The heat recovered can be regulated by means of the controllable bypass damper. A proportion of the outside air is by-passed the plate heat exchanger.

Summertime conditions

In the case of rising outside air humidity, the recirculation air damper is continuously closing as required. When the outside air humidity is high, the damper closes completely. The system works at 100% outside air / exhaust air operation through the heat exchanger. Heat recovery is not required. air and is transferred to the supply air in the heat exchanger. The cross-counterflow-cross heat exchanger enables the recovery of up to 80% of the heat contained in the return air. The ventilation heat losses that have to be covered by the pumped hot water heating coil are thus kept to a minimum.

ThermoCond Type 23

System dimensions and weights

Unit feet 100mm Optionally: adjustable feet from 100 to 120 mm

Unit type	L	W 1	H ²	L1	L2	W1	W2	H1	H2	H3	H4	H5	Weight
23 12 01	2,580	570	1,210	410	2,170	420	350	1,050	325	420	420	325	450
23 18 01	3,060	730	1,530	410	2,650	580	505	1,370	485	580	580	485	600
23 26 01	3,700	730	1,850	410	3,290	580	505	1,690	485	900	580	580	870
23 36 01	3,700	1,050	1,850	410	3,290	900	825	1,690	485	900	580	580	1,100

Controls cabinet

Unit Type	H x W x D	Position at unit
23 12 01	600 x 600 x 200	OA/EA side
23 18 01	600 x 600 x 200	OA/EA side
23 26 01	600 x 600 x 200	OA/EA side
23 36 01	600 x 600 x 200	OA/EA side

For service work, a clearance corresponding to dimension W is required on the operating side of the unit. If dimension W is smaller than one metre, please leave a clearance of one metre. For service work above the unit, please allow 50 mm working height clearance above the cable duct.

Please comply with the dimensions for body size, air duct connections and electrical switch cabinet.

Partitioning of unit for smaller apertures possible (at extra cost).

All lengths are given in mm, weights in kg, weight incl. controls cabinet.

- Door fitting assembly increase unit width by 25 mm each operating side incl. 100 mm unit feet and 60 mm cable duct 2

hermoCond private

Technical specifications and services

Unit Type		23 12 01	23 18 01	23 26 01	23 36 01
Optimum flow rate	m³/h	1,600	2,500	3,200	5,000
Dehumidification capacity according to VDI 2089	kg/h	10.3	16.2	20.7	30.2
Total electrical power rating ¹	kW	1.08	1.78	2.39	3.24
Max. current consumption ¹	A	6.6	13.8	8.0	6.6
Operating voltage		1 / N / PE 2	230 V 50 Hz	3 / N / PE 4	100 V 50 Hz
Ext. pressure losses					
Supply and fresh air channel	Pa	300	300	300	300
Return and exhaust air channel	Pa	300	300	300	300
Sound power level ²					
Supply air vent	dB(A)	60	67	68	70
RA connection	dB(A)	58	65	65	67
Outside air vent	dB(A)	50	55	59	57
EA connection	dB(A)	54	62	62	65
Acoustic pressure at a distance of 1 m from the device ²	dB(A)	43	51	51	54
Fan units					
Rated motor input for supply air ³	kW	0.52	0.82	1.11	1.48
Rated motor input for return air ³	kW	0.56	0.96	1.28	1.76
Rated motor input for supply air recirc mode ³	kW	0.29	0.45	0.57	0.79
Rated motor input for return air recirc mode ³	kW	0.29	0.45	0.57	0.79
SFP category (supply air return air) recirc mode		1 1	1 1	1 1	1 1
Nominal rating supply air return air	kW	0.8 0.8	1.4 1.4	2.5 2.5	2.0 2.0
Filtration according to DIN EN 779					
Outside air			Ν	15	
Return air			M	15	
LPHW					
Heating capacity recirc mode ⁴	kW	9.2	14.8	17.6	28.8
Heating capacity OA-EA operation ⁴	kW	10.9	17.7	20.1	33.7
Water flow rate and pressure losses					
LPHW	m³/h kPa	0.48 7.4	0.78 4.4	0.88 5.4	1.47 9.8
LPHW valve	m³/h kPa	0.48 9.0	0.78 9.6	0.88 12.4	1.47 13.6
Connections					
LPHW connection	DN	32	32	32	32
LPHW control valve connection	DN	10	15	15	20
Condensate drainage	DN	20	20	20	20
Floor drain	DN	20	20	20	20

Specifications of technical data relate to the optimum flow rate and return air condition 30° C / 54% r.h., outside air condition 15° C / 84% r.h. and standard density (1.204 kg/m³), unless otherwise specified.

2 depends on configuration of measurement and control system/unit
 3 at 250 Hz mid-band frequency
 4 with average filter contamination
 5 FL/RL = 70/50° C, SA ≈ 50° C

Please seek approval of technical data and specifications prior to start of the planning process.

Air conditioning unit with counterflow plate heat exchanger for medium-sized and large public swimming pool halls

Automatically selects the most economical operating mode!

ThermoCond 38

AIR VOLUME FLOW: 2,600 - 35,100 m³/h

At a glance:

Heat recovery rate of more than 95% with just 150 Pa pressure drop Designed for the requirements of the highest energy efficiency classes HRC class H1, even at high air velocities Energy-saving EC fans **Optionally: Clean water heater** Integrated defrosting function Thermal bridge factor k_b = 0.78 - class TB1 Two-stage supply air filtration Freely configurable HVAC system Load-dependent variable volume flow rate adjustment Fulfils the requirements of VDI 6022

Devices of the series 38 achieve a very high energy efficiency, since the integrated program only adds as much air as is required for dehumidification of the pool hall air. ThermoCond 38 dehumidifies exclusively with outside air. The design ensures the cleanability according to VDI 6022. The integrated Eurovent seal refers to range Menerga Air, more information on page 6. Check ongoing validity of certificate www.eurovent-certification.com or www.certiflash.com

counterflow plate heat exchanger reaches a real counter flow share of 80% with highest heat recovery rates. Optionally the device can be equipped with a fresh water heater for an even more efficient use of the heat energy contained in the exhaust air.

PERFORMANCE

Further performance parameters and options:

- Corrosion-free counterflow plate heat exchanger made from polypropylene
- Pumped hot water heating coil
- Air filtration in all operating conditions, with filters in return air, outside air supply air
- Constantly regulated recirc air heating damper
- Recirculation air defrost damper
- Integrated freely programmable control and regulation unit
- Complete unit, contains all structural elements for heating, dehumidification and ventilation
- Intensive quality inspection with factory test run

- Cleaning of the heat exchanger possible in mounted position

Options:

- Integrated heat recovery bypass by means of RA/EA and OA/SA dampers
- Recuperator in short version
- Sound absorber
- Outdoor installation
- Remote maintenance
- Clean water heater
- And many more

Standby mode

If no requirements are specified regarding temperature regulation or dehumidification when the swimming pool hall is in standby mode, the system operates

Recirculation Air Operation (heating)

The heating coil heats the swimming pool hall as required in recirculation mode. In order to reduce the internal pressure losses, the recirculation air only in recirculation mode. The air circulation in the swimming pool hall is guaranteed, with the fans working at a lower capacity.

defrost damper is also opened. The outside air and exhaust air dampers are closed.

Bathing Mode and Standby mode with Dehumidification Requirement

The swimming pool hall is dehumidified through the addition of outside air to the recirculation air volume flow. In swimming pool mode the minimum required amount of outside air is added to the recirculation air for hygienic reasons (VDI 2089). The proportion of outside air depends on the

Outside Air / Exhaust Air Mode

.

In the case of rising outside air humidity, the recirculation air damper is continuously closing as required. When the outside air humidity is high, the damper closes current evaporation of water (and therefore the occupancy level of the swimming pool hall), as well as the outside air humidity. This is continuously and automatically adjusted. If the waste heat recovery is not sufficient for achieving the desired supply air temperature, the supply air is reheated in the heating coil.

completely. The system works at 100% outside air / exhaust air operation through the counterflow plate heat exchanger.

Defrost Operation

All recuperative heat exchangers tend to ice over in the case of low outside temperatures. Through the integrated recirculation air defrost damper, the heat exchanger is quickly and efficiently defrosted. The

As an option the device unit be equipped with the heat exchanger bypass. The proportion of the air guided through the heat exchanger and the warm return air passes right through the counterflow plate heat exchanger and melts any possible ice. During the defrosting process, the technical design prevent re-evaporation in the supply air.

bypass can be regulated as required up to free ventilation.

ThermoCond Type 38

System dimensions and weights

-W1-

02

Important! Where a system is operated in parallel, the supply air and return air ducts of the two units have to be brought together.

Where units are run in parallel, each unit has a controls cabinet. Mirror-image design possible.

* Floor drain ** Condensate drainage

Unit type	Ľ	W ²	H ³	L11	L2 ¹	L31	W1	W2	H1	H2	Weight ¹
38 03 01	4,810	790	1,700	1,240	2,970	600	580	510	1,520	580	1,190
38 05 01	4,970	1,110	1,700	1,400	2,970	600	900	830	1,520	580	1,460
38 06 01	5,610	790	2,340	1,400	3,610	600	580	420	2,160	900	1,600
38 10 01	5,610	1,110	2,340	1,400	3,610	600	900	740	2,160	900	1,900
38 13 01	5,770	1,430	2,340	1,560	3,610	600	1,220	1,060	2,160	900	2,350
38 16 01	5,770	1,750	2,340	1,560	3,610	600	1,540	1,380	2,160	900	2,650
38 19 01	5,770	2,070	2,340	1,560	3,610	600	1,860	1,700	2,160	900	3,000
38 25 01	6,250	2,070	2,980	1,560	4,090	600	1,860	1,700	2,800	1,220	3,900
38 29 01	6,250	2,390	2,980	1,560	4,090	600	2,180	2,020	2,800	1,220	4,300
38 37 01	6,250	3,030	2,980	1,560	4,090	600	2,820	2,660	2,800	1,220	5,700

Largest transport unit

Unit Type	Ľ	W	H ³	Weight ¹
38 03 01	2,970	790	1,700	620
38 05 01	2,970	1,110	1,700	760
38 06 01	3,610	790	2,340	900
38 10 01	3,610	1,110	2,340	1,100
38 13 01	3,610	1,430	2,340	1,300
38 16 01	3,610	1,750	2,340	1,500
38 19 01	3,610	2,070	2,340	1,720
38 25 01	4,090	2,070	2,980	2,300
38 29 01	4,090	2,390	2,980	2,600
38 37 01	4,090	1,515	2,980	1,750

Controls cabinet

Unit Type	$H \times W \times D^1$	Position at unit
38 03 01	1,120 x 640 x 210	SA/RA side
38 05 01	1,120 x 640 x 210	SA/RA side
38 06 01	1,120 x 640 x 210	SA/RA side
38 10 01	1,120 x 640 x 210	SA/RA side
38 13 01	1,120 x 640 x 210	SA/RA side
38 16 01	1,120 x 640 x 210	SA/RA side
38 19 01	1,120 x 640 x 210	SA/RA side
38 25 01	1,280 x 640 x 210	SA/RA side
38 29 01	1,280 x 640 x 210	SA/RA side
38 37 01	1,280 x 640 x 210	SA/RA side

For service work, a clearance corresponding to dimension W is required on the operating side of the unit. If dimension W is smaller than one metre, please leave a clearance of one metre. For service work above the unit, please allow 50 mm working height clearance above the cable duct. For service work at unit type 38 37 01 a clear-ance at the rear of at least 1.500 pm is required. mm is required.

Please comply with the dimensions for body size, air duct connections and electrical controls cabinet.

All length dimensions in mm, weight incl. controls cabinet.

- 1 May change depending on choosen option, e.g. recuperator in short version
- ((- 960 mm)
 Door fitting assembly increase
 unit width by 65 mm each
 operating side
 incl. 120 mm base frame,
 incl. 60 mm cable duct 2
- 3

3 transportation units are supplied, including controls cabinet until unit type 38 29 01. Unit type 38 37 01 is delivered in 4 transportation units including controls cabinet. Further partitioning for smaller apertures possible (at extra cost).

Technical specifications and services

Unit Type		38 03 01	38 05 01	38 06 01	38 10 01	38 13 01	38 16 01	38 19 01	38 25 01	38 29 01	38 37 01
Optimum flow rate	m³/h	2,600	3,900	4,000	6,000	7,900	9,800	11,800	15,800	18,400	23,600
Max. volume flow rate ¹	m³/h	3,500	5,300	6,000	9,500	10,500	14,000	18,000	22,500	25,900	35,100
Heat recovery efficiency ² %						ove	r 95				
Heat recovery efficiency acc. EN 308	%	76	76	78	78	78	78	78	80	80	80
Dehumidification capacity acc. VDI 2089 at Vopt	kg/h	16.8	25.2	25.8	38.8	51.0	63.3	76.2	102.1	118.9	152.5
Dehumidification capacity acc.VDI 2089 at Vmax	kg/h	22.6	34.2	38.8	61.4	67.8	90.4	116.3	145.4	167.3	214.3
Total electrical power rating ³	kW	1.97	2.80	2.98	4.49	5.45	6.54	9.37	12.74	16.38	21.45
Max. current consumption ³	А	5.2	7.2	7.2	9.2	14.6	14.6	23.9	29.2	31.4	47.1
Operating voltage					3	5 / N / PE 4	100 V 50 H	Z			
Ext. pressure losses											
Supply and fresh air channel	Pa	300	300	300	300	300	300	400	400	500	500
Return and exhaust air channel	Pa	300	300	300	300	300	300	400	400	500	500
Sound power level ⁴											
Supply air vent	dB(A)	78	79	72	72	77	71	76	84	77	80
RA connection	dB(A)	72	66	66	72	68	70	73	75	74	80
Outside air vent	dB(A)	68	69	69	66	66	62	74	72	75	80
EA connection	dB(A)	72	63	63	69	69	67	70	77	76	82
Acoustic pressure in 1 m distance from device ⁴	dB(A)	64	63	63	59	62	58	61	69	63	72
Fan units											
Rated motor input for supply air ⁵ 100%, 60% flow rate	kW	1.12 0.69	1.60 0.95	1.71 0.99	2.46 1.25	3.06 1.73	3.62 1.94	5.22 3.06	7.02 4.18	9.04 4.96	11.67 6.81
Rated motor input for return air ⁵ 100%, 60% flow rate	kW	0.85 0.54	1.20 0.67	1.27 0.69	2.03 0.99	2.39 1.34	2.92 1.54	4.15 2.14	5.72 3.34	7.34 4.26	9.78 5.97
SFP category supply air return air (60% Vopt)		2 2	2 2	2 2	2 3	2 2	2 2	2 3	3 3	3 3	3 3
Nominal rating supply air return air	kW	1.7 1.7	3.0 1.7	3.0 1.7	3.0 3.0	4.7 4.7	4.7 4.7	6.0 4.7	9.4 9.4	11.0 9.4	16.5 14.1
Efficiency classes according to EN 13053:2	012										
Heat recovery class		H1									
Power consumption of fan motors SA RA		P2 P2	P2 P1	P2 P1	P1 P1	P2 P1	P1 P1	P1 P1	P1 P1	P2 P2	P2 P2
Air velocity class		V1	V1	V2							
Filtration according to DIN EN 779											
Supply air Outside air						F7	M5				
Return Air						N	15				
LPHW											
Heating capacity max. ⁶	kW	17.4	26.1	26.1	40.1	58.7	71.9	89.5	112.6	139.1	185.9
Water flow rate and pressure losses											
LPHW	m³/h kPa	0.76 4.3	1.38 3.6	1.25 4.1	2.14 3.5	2.57 5.9	3.24 4.2	3.91 6.7	5.66 3.3	6.08 4.1	8.13 8.3
LPHW (pump warm water) valve	m³/h kPa	0.76 9.3	1.38 4.8	1.25 6.3	2.14 4.6	2.57 6.6	3.24 6.7	3.91 9.8	5.66 5.1	6.08 5.9	8.13 10.6
Clean water heater (optional)											
Capacity ⁷	kW	1.53	2.71	2.68	3.78	5.40	7.05	8.84	11.01	12.58	16.28
Clean water volume flow rate	m³/h	0.07	0.12	0.12	0.18	0.25	0.33	0.38	0.51	0.58	0.75
Connections											
LPHW connection	DN	32	32	32	32	40	40	40	50	65	65
LPHW control valve connection	DN	15	20	20	25	25	32	32	40	40	40
Condensate drainage	DN	40	40	40	40	40	40	40	40	40	40
Floor drain	DN	20	20	20	20	20	20	20	20	20	20
Clean water heater (optional)	DN	15	15	15	15	15	15	15	15	15	15

Specifications of technical data relate to the optimum flow rate and return air condition 30° C / 54% r.h., outside air condition 15° C / 84% r.h. and standard density (1.204 kg/m³), unless otherwise specified.

2 RA = 30° C / 54% r.h.; OA = -12° C / 90% r.h.; 1/3 OA rate

a) Depends on configuration of measurement and control system/unit
b) at 250 Hz mid-band frequency
c) with average filter contamination

6 FL = 70° C; SA ≈ 50° C

7 Water inlet temp = 10° C, Water outgoing temperature ≈ 28° C

Please seek approval of technical data and specifications prior to start of the planning process.

1 With regard to return air condition; May require alteration of the technical equipment

Air conditioning unit with asymmetrical high-capacity heat exchanger and integrated output-regulated heat pump and efficient volume flow control for medium-sized and large public swimming pool halls

Automatically selects the most economical operating mode!

ThermoCond 39

AIR VOLUME FLOW: 2,600 - 33,500 m³/h

At a glance:

- Dehumidifies, ventilates and heats
- Corrosion-free heat exchanger made from polypropylene
- Integrated output-regulated heat pump
- Average heating capacity value COP up to 7.2

Energy-saving EC fans/EffiVent

Demand-oriented volume flow rate reduction for supply and return air

• Two-stage supply air filtration

 Precise measurement and regulation of the outside air volume

 Fulfils the requirements of VDI 6022 Devices of the series 39 achieve a very high energy efficiency, since the integrated program only adds as much air as is required for dehumidification of the pool hall air. The overall efficiency of the system is further enhanced by the integrated heat pump. Due to the structural design of the unit the clean-

ability according to VDI 6022 is ensured.

nformation on page 6. Check ongoing validity of certificate www.eurovent-certification.com or www.certiflash.com

Further performance parameters and options:

- Modular design with high variability
- Filtering the air in any operating mode
- Pumped hot water air heater
- Individually controllable performance parameters
- Complete unit, ready to connect, contains all structural elements for air conditioning swimming pool hall air, including all control and regulation fittings
- Thermal bridge factor TB1
- Intensive quality inspection with factory test run

Options

- Pool water condenser
- HRC bypass function
- Dehumidification in recirculation mode
- Dehumidifying the outside air using additional outside and exhaust air connection pieces
- Reinforced compressor refrigeration system
- Fresh water heater
- Attenuator
- Outdoor installation
- Remote maintenance
- And many more

Standby mode

closed

If no requirements are specified regarding temperature regulation or dehumidification when the swimming pool hall is in standby mode, the system operates only in recirculation mode. The air circulation in the swimming pool hall is guaranteed, with the fans working at a lower capacity.

air defrost damper is also opened. The

outside air and exhaust air dampers are

Recirculation Air Operation (heating)

The pumped hot water heating coil heats the swimming pool hall as required in recirculation mode. In order to reduce the internal pressure losses, the recirculation

Swimming pool mode with dehumidification requirements

Return air is cooled and dehumidified in the evaporator of the continuously adjustable heat pump, reinforced by the upstream heat exchanger. The outside air, with its low moisture content, is preheated in the heat exchanger, and is subsequently mixed with a proportion of untreated recirculated air, heated in the condenser using the heat energy from the dehumidification process, and fed into the swimming pool hall as supply air. If the heating capacity is not sufficient, the supply air is reheated with the heating

Outside Air Exhaust Air Mode

In the case of rising outside air humidity, the recirculation air damper is continuously closing as required. If the outside air moisture is high, the damper closes completely, the system works exclusively in outside air-exhaust air mode via the

Optionally

In order to achieve the hall humidity levels required by VDI 2089 in summertime conditions, it may be necessary and more economical to use an additional damper system. A second outside air duct is used to take in outside air. Some of the outside air is precooled via the recuperator, and then cooled below dew point in the evaporator. The air is coil. The use of the freely controllable heat pump allows the demand-oriented regulation of the volume flow rate. This guarantees a consistent humidity level in the swimming pool hall while consuming minimal energy. For hygiene reasons, a minimum of outside air is fed into the swimming pool hall during swimming pool mode. The proportion of outside air is determined based on the current evaporation of water (and therefore the occupancy level of the swimming pool hall) and is continuously adjusted.

heat exchanger. The demand-oriented flow rate control reduces energy consumption to a minimum.

then reheated in the recuperator, and then dried and cooled with some of the untreated outside air, before being introduced into the hall as supply air. If no heating of the swimming pool hall is required, the heat of condensation is discharged directly into the return air flow.

ThermoCond Type 39

System dimensions and weights

W2

105

Important! Where a system is operated in parallel, the supply air and return air ducts of the two units have to be brought together.

Where units are run in parallel, each unit has a controls cabinet.

Mirror-image design possible.

- Floor drain
- ** Condensate drain

Unit type W² L1¹ **L2**¹ **L3**¹ W1 W2 Weight¹ L1 **H** ³ H2 39 03 01 3,940 790 1,700 1,970 1,370 580 510 1,520 580 600 1,050 1,700 2,130 1,370 39 05 01 4,100 1,110 600 900 830 1,520 580 1,300 39 06 01 4,740 790 2,340 2,130 2,010 600 580 420 2,160 900 1,350 39 10 01 4,740 1,110 2,340 2,130 2,010 600 900 740 2,160 900 1,650 2,050 39 13 01 4,900 1,430 2,340 2,290 2,010 600 1,220 1,060 2,160 900 39 16 01 4,900 1,750 2,340 2,290 2,010 600 1,540 1,380 2,160 900 2,250 39 19 01 4,900 2,070 2,340 2,290 2,010 600 1,860 1,700 2,160 900 2,500 3,250 39 25 01 5,700 2,070 2,980 2,450 2,650 600 1,860 1,700 2,800 1,220 39 32 01 6,180 2,070 3,620 2,450 3,130 600 1,860 1,700 3,440 1,540 3,950 39 36 01 6,180 2,390 3,620 2,450 3,130 600 2,180 2,020 3,440 1,540 4,650

Largest transport unit

Unit Type	Ľ	W	H ³	Weight ¹
39 03 01	1,970	790	1,700	510
39 05 01	2,130	1,110	1,700	660
39 06 01	2,130	790	2,340	630
39 10 01	2,130	1,110	2,340	750
39 13 01	2,290	1,430	2,340	980
39 16 01	2,290	1,750	2,340	1,130
39 19 01	2,290	2,070	2,340	1,270
39 25 01	2,650	2,070	2,980	1,210
39 32 01	3,130	2,070	3,620	1,700
39 36 01	3,130	2,390	3,620	2,050

Controls cabinet

Unit Type	$H \ge W \ge D^1$	Position at unit
39 03 01	1,120 x 640 x 210	SA/RA side
39 05 01	1,120 x 640 x 210	SA/RA side
39 06 01	1,280 x 640 x 210	SA/RA side
39 10 01	1,280 x 640 x 210	SA/RA side
39 13 01	1,280 x 640 x 210	SA/RA side
39 16 01	1,280 x 640 x 210	SA/RA side
39 19 01	1,280 x 640 x 210	SA/RA side
39 25 01	1,280 x 640 x 210	SA/RA side
39 32 01	1,600 x 640 x 250	SA/RA side
39 36 01	1,600 x 640 x 250	SA/RA side

For service work, a clearance corresponding to dimension W is required on the operating side of the unit. If dimension W is smaller than one metre, please leave a clearance of one metre. For service work above the unit, please allow 50 mm working height clearance above the cable duct.

Please comply with the dimensions for body size, air duct connections and electrical controls cabinet.

All lengths are given in mm, weights in kg, weight incl. controls cabinet.

1 May change depending

on choosen option 2 Door fitting assembly increase unit width by 65 mm each

operating side 2 incl. 120 mm base frame, incl. 60 mm cable duct

3 transportation units are supplied, including controls cabinet. Further partitioning for smaller apertures possible (at extra cost).

Technical specifications and services

Unit Type		39 03 01	39 05 01	39 06 01	39 10 01	39 13 01	39 16 01
Optimum flow rate	m³/h	2,600	3,900	4,000	6,000	7,900	9,800
Max. volume flow rate ¹	m³/h	3,500	5,300	6,300	9,500	12,600	15,800
Heat recovery efficiency ²	%	83	83	83	83	84	84
Heat recovery efficiency acc. EN 308	%	53	53	63	63	63	63
Dehumidification capacity according to VDI 2089 Vopt	kg/h	17.1	25.2	25.8	38.8	51.0	63.3
Dehumidification capacity according to VDI 2089 Vmax ¹	kg/h	22.6	34.2	40.7	61.4	81.4	102.1
Heating capacity of heat pump	COP	6.0	7.5	7.4	6.8	7.0	7.1
Total electrical power rating ³	kW	4.2	3.5	3.4	5.3	7.0	7.9
Max. current consumption ³	Α	12.1	12.1	12.1	20.2	29.6	30.5
Operating voltage				3 / N / PE 4	100 V 50 Hz		
Ext. pressure losses							
Supply and fresh air channel	Pa	300	300	300	300	300	300
Return and exhaust air channel	Pa	300	300	300	300	300	300
Sound power level ⁴	10	500	500	500	500	500	500
	dB(A)	78	67	66	71	75	70
RA connection	dB(A)	70	64	65	77	67	68
	$dB(\Lambda)$	68	59	59	65	65	64
EA connection		71	67	67	69	65	66
Acoustic pressure at a distance of 1 m from the device 4	dB(A)	63	53	52	58	60	56
For write	UD(A)	05	55	JZ	50	00	50
Patrod motor input for supply air (100% 60% volume flow rate) ⁵	L\\/	1071068	1201092	1 20 0 91	2161111	2611157	3121176
Rated motor input for suppry all (100% 60% volume flow rate) =	K VV	0.701051	1.37 0.02	1.37 0.01	2.10 1.14	2.01 1.37	2.12 1.70
SED cotogory supply pic locture pic (60% V)	KVV	0.76 0.31	1.10 0.05	1.11 0.02	1.70 0.00	2.01 1.17	2.47 1.37
Nominal rating supply air l return air	L\\/	2 2 17 17	∠ 17 17	∠ 17 17	30130		1 2
	K V V	1.7 1.7	1.7 1.7	1.7 1.7	3.0 3.0	4.7 4.7	4.7 4.7
Integrated neat pump	ka	40150		(0)(0)	70100	1001110	1201140
Plated emperant type R407C (without Pwc with Pwc)	K <u>ý</u>	4.0 5.0	5.0 0.0	0.0 0.0	7.0 9.0	10.0 11.0	12.0 14.0
Rated compressor input for OA operation (60% Vopt)	K VV	2.3 12.0	2.0	2.0	3.3	4.3	4.8
	KVV	15.9	15.0	14.7	22.5	30.0	54.1
Efficiency classes according to EN 13053:2012		114	114	114	114	114	114
Heat recovery class		HI					
Power consumption of fan motors SA RA		PZ PZ			P3 P3		
		VI	VI	٧Z	٧Z	٧Z	٧Z
Filtration according to DIN EN 779							
Supply air Outside air				F/	M5		
Return air				IV	15		
LPHW	LAAL	14.0	22.0	22.2	25.2	F 4 0	(27
Max. neating power *	KVV	14.9	22.8	Z3.Z	35.Z	54.0	63.7
Water flow rate and pressure losses	3/1.110	0.05150	1 20 1 2 4	1 2 2 1 4 2	2 22 1 2 0	226154	224144
LPHW	m [°] /n kPa	0.85 5.2	1.39 3.6	1.28 4.3	2.23 3.8	2.36 5.1	3.31 4.4
	т-/п кра	0.85 11.5	1.39 4.7	1.28 6.6	2.23 5.0	2.36 5.6	3.31 7.0
Pool water condenser ^{7,8}	1		. = .				
Heating capacity	kW	14.1	15.0	14.6	22.2	29.4	33.0
Spread of pool water temperature	K	8.1	8.1	7.8	8.0	8.2	7.5
Pool water volume flow rate	m²/h	1.5	1.6	1.6	2.4	3.1	3.8
Water side pressure loss	kPa	6.0	6.8	6.8	6.7	10.9	16.1
Connections							
LPHW connection	DN	32	32	32	32	40	40
LPHW control valve connection	DN	15	20	20	25	25	32
Condensate drainage	DN	40	40	40	40	40	40
Floor drain	DN	20 40	20 40	20 40	20 40	20 40	20 40
PWC connection ⁷	DN	25	25	25	40	40	40

Specifications of technical data relate to the optimum flow rate and return air condition 30° C / 54% r.h., outside air condition 15° C / 84% r.h. and standard density (1.204 kg/m³), unless otherwise specified.

3 Depends on configuration of measurement and control

system/unit 4 at 250 Hz mid-band frequency

at 250 Hz Intro-Dath Requency
with average filter contamination
FL = 70° C; SA ≈ 50° C
Pool water condenser (supplementary equipment)
Heat emission full and proportional; when water enters 28° C

Please seek approval of technical data and specifications prior to start of the planning process.

1 May require alteration of the technical equipment 2 RA = 30° C / 54% r.h.; OA = -12° C / 90% r.h.; 1/3 OA rate

35

Technical specifications and services

Unit Type		39 19 01	39 25 01	39 32 01	39 36 01
Optimum flow rate	m³/h	11,800	15,800	19,900	23,100
Max. volume flow rate ¹	m ³ /h	19,000	25,000	30,000	33,500
Heat recovery efficiency ²	%	84	84	84	84
Heat recovery efficiency arc FN 308	%	63	65	64	64
Debumidification capacity according to VDI 2089 Vest	ka/h	76.2	102.1	128.6	149.2
Dehumidification capacity according to VDI 2009 Voja	ka/h	122.7	162.1	193.8	216.4
Heating capacity of beat nump	COP	7.0	72	7 /	73
Total electrical power rating ³	kW	11.2	14.0	17.0	19.8
Max current consumption ³	٨	36.1	54.7	61.4	75.3
Operating voltage		50.1	3 / N / PE /	100 V 50 Hz	75.5
			5/14/12	100 1 30 112	
Supply and fresh air channel	Pa	400	400	500	500
Return and exhaust air channel	Pa	400	400	500	500
Sound nower level 4	10	100	100	500	500
Supply air yent	dB(A)	75	87	77	78
BA connection		73	71	75	75
Autside air vent	dB(A)	69	71	73	79
FA connection		70	71	72	73
Acoustic pressure at a distance of 1 m from the device 4	dB(A)	60	67	67	70
Fan units	00() ()		0,	01	
Rated motor input for supply air (100% 60% volume flow rate) 5	kW	4661260	6021378	8 66 4 84	996/618
Rated motor input for return air (100% 60% volume flow rate) ⁵	kw/	3 66 1 90	4981292	7.0213.96	8241222
SEP category supply air l return air (60% Voit)	N V V	212	212	3 3	2 3
Nominal rating supply air l return air	kW	60147	94194	110194	165194
	NVV	0.0 1.7	2.1	11.0 [2.1	10.5 7.1
Filling volume refrigerant type R407C (without PWC) with PWC)	ka	16.0 20.0	23.01.25.0	2901310	3101350
Rated compressor input for OA operation (60% Vort)	kW	67	73	87	11.4
Heating capacity of heat pump for OA operation (60% V _{oot})	kW	46.8	52.4	60.7	83.1
Efficiency classes according to EN 13053-2012		1010	52.1	0017	0011
Heat recovery class		Н1	Н1	Н1	Н1
Power consumption of fan motors SA I RA		P3 P2	P3 P2	P3 P1	P3 P2
Air velocity class		V2	V2	V2	V2
Elitration according to DIN EN 779		• =	• =	• =	• =
Supply air LOutside air			F7 I	M5	
Return air			N	15	
LPHW					
Max. heating capacity ⁶	kW	81.9	103.0	127.7	158.7
Water flow rate and pressure losses					
LPHW ⁸	m³/h kPa	3.58 5.7	5.63 3.2	7.25 2.9	7.38 3.3
LPHW valve ⁸	, , m³/h∣kPa	3.58 8.2	5.63 5.1	7.25 3.3	7.38 3.4
Pool water condenser ^{7,8}					
Heating capacity	kW	48.6	53.2	60.1	84.5
Spread of pool water temperature	K	8.5	8.3	8.3	8.5
Pool water volume flow rate	m³/h	4.9	5.5	6.2	8.6
Water side pressure loss	kPa	8.6	10.7	13.4	8.3
Connections					
LPHW connection	DN	40	50	50	65
LPHW control valve connection	DN	32	40	40	40
Condensate drainage	DN	40	40	40	40
Floor drain	DN	20 40	20 40	20 40	20 40
PWC connection ⁷	DN	50	50	50	50
Specifications of technical data relate to the optimum 3 Depends on config flow rate and return air condition 30° C / 54% r.h., system/unit	guration of mea	surement and control	Please seek app to start of the pla	oval of technical data	and specifications prior

Specifications of technical data relate to the optimum flow rate and return air condition 30° C / 54% r.h., outside air condition 15° C / 84% r.h. and standard density (1.204 kg/m³), unless otherwise specified.

1 2

May require alteration of the technical equipment RA = 30° C / 54% r.h.; OA = -12° C / 90% r.h.; 1/3 OA rate

system/unit 4 at 250 Hz mid-band frequency

4 at 250 H2 intro-ball requery
5 with average filter contamination
6 FL = 70° C; SA ≈ 50° C
7 Pool water condenser (supplementary equipment)
8 Heat emission full and proportional; when water

enters 28° C

WE ARE EXPERTS FOR

WE ARE EXPERTS FOR - Private swimming pools, - Public swimming pool halls, - AquaParks, - Adventure pools, - Sports pools, - Saline baths, - Hotel pools, - School pools, - Therapeutic pools and many more. and many more.

Just get in Contact – we find the solution for dehumidification, comfort air conditioning and many more applications.

LASKO THERMAL BATHS, SLOVENIA

4

Wellness Park with 2,200 m² of water area.

Accessories: Slot diffuser

AVAILABLE IN LENGTHS OF 500 TO 6,000 MM

At a glance:

Menerga slot diffusers allow steady and effective distribution of air and heat in a room. They are only minimal visible and easy to install. They are mounted on window fronts in swimming pool halls in order to keep the windows mist-free and

can also be used in every othe building type. The introduction of the air via slot diffusers prevents draughts at floor level. Build-up of heat is also avoided in the event of strong sunlight.

Example of installation

Optional miter cuts

Available lengths and Cross-sections

Length 500-6000mm can be orderd up to 10 mm precisely. Consider linear expansion during assembly! In floor range of public swimming pool halls exclusively type A is permitted!

Type A = Slot width 8 mm Type B = Slot width 10 mm Type C = Slot width 12 mm

Type A5=5x8 | Type B5=5x10 | Type C5=5x12

and I second baseline |

-

DS J

and the second

amper the second

ETRIUM, COLOGNE Office building in passive house standard, with DGNB quality seal in gold, equiped with Menerga Resolair.

Comfort air conditioning unit with cross-counterflow-cross heat exchanger

most economical operating mode!

Trisolair 52 and Trisolair 59

AIR VOLUME FLOW: 1,200 - 5,000 m³/h

At a glance:

- Over 80% temperature efficiency through three-stage recuperative heat recovery
- Energy efficiency class H1 according to EN 13053:2012
 - **Energy-saving EC fans**

.....

- Integrated compressor refrigeration system (59 series)
- Compact design
- Integrated defrosting function

Integrated control and regulation system, compatible with all conventional building management systems

.....

Fulfils the requirements of **VDI 6022**

Units in the Trisolair 52 and 59 series combine the highest heat recovery efficiency, low pressure drops and compact design. The units already meet the requirements of the second step of ErP 2009/125/EC. Ideal application areas are refurbishments at low to medium air volumes

A compressor refrigeration system integrated into the 59 series increases the cooling capacity of the overall system at high temperatures and additionally allows dehumidification of the outside air.

ECODESIGN

2016 + 2018

Further performance parameters and options:

- Filtering the air in any operating mode
- Corrosion-free heat exchanger made from polypropylene
- Pumped hot water heating coil
- Bypass damper
- Individually controllable performance parameters
- Complete unit, ready to connect, contains all structural elements for comfort air conditioning, including all control and regulation fittings
- Intensive quality inspection with factory test run

Options

- Recirculation air heating damper -
- Pumped chilled water cooling coil
- Reversible compressor refrigeration system (series 59)
- Outdoor installation
- Thermal bridge factor TB1
- Remote maintenance
- And many more

Heat recovery

In case of low outside temperatures the system operates completely in heat recovery mode. The cross-counterflowcross plate heat exchanger enables the recovery of up to 80% of the heat contained in the return air. The standard integrated heating coil compensates for ventilation and transmission heat losses of the building as required.

Reduced heat recovery

If the outside air temperatures rise, the heat recovery requirement is reduced. The bypass dampers, which run along the entire depth of the device, are continuously regulated in order to achieve the desired supply air temperature. If the outside temperatures continue to rise, the heat recovery is completely bypassed. The design of the bypass reduces the internal pressure drop on the OA-SA path and hence also significantly reduces the power consumption of the fan motor as it is effective over the entire depth of the unit.

Summertime conditions

If the outside temperature rises above the return temperature, the highly efficient heat exchanger is used as a "cooling recovery system". The warm outside air is cooled by the return air.

Cooling operation type 59: Where outside air temperatures are sufficiently high, the heat exchanger is used for precooling the outside air (cold recovery). This minimises the electrical capacity required by the integrated compressor refrigeration system, which cools the supply air to the desired temperature and dehumidifies it if required. If unfavourable temperature conditions mean that precooling is not practical, the heat exchanger is bypassed.

Recirculation Air Heating Operation*

.

In recirculation air mode, the outdoor and exhaust air dampers are closed. The air is heated via the heating coil. Rooms which are not used all of the time, such as lecture halls or sports halls, can therefore be quickly heated before being used.

* only possible with optional recirculation air heating damper

1 Recirculation air heating damper (additional equipment)

Trisolair Type 52 and Type 59

System dimensions and weights

Mirror-image design possible.

Trisolair Type 52

Unit Type	Ľ	W²	H³	L11	L2 ¹	W1	W2	H1	H2	H3	H4	H5	Weight ¹
52 12 01	2,580	570	1,210*	410	2,170	420	350	1,050	325	420	420	325	420
52 18 01	3,060	730	1,530*	410	2,650	580	505	1,370	485	580	580	485	560
52 26 01	3,700	730	1,850	410	3,290	580	505	1,690	485	900	580	580	830
52 36 01	3,700	1,050	1,850	410	3,290	900	825	1,690	485	900	580	580	1,050

Controls cabinet

Unit Type	$H \ge W \ge D^1$	Position at unit
52 12 01	480 x 640 x 210	On top of unit
52 18 01	480 x 640 x 210	On top of unit
52 26 01	900 x 480 x 210	OA/EA side
52 36 01	900 x 480 x 210	OA/EA side

For service work, a clearance corresponding to dimension W is required on the operating side of the unit. If dimension W is smaller than one metre, please leave a clearance of one metre. For service work above the unit, please allow 50 mm working height clearance above the cable duct.

Please comply with the dimensions for body size, air duct connections and electrical switch cabinet.

Partitioning of unit for smaller apertures possible (at extra cost)

All lengths are given in mm, weights in kg, weight incl. controls cabinet

- 1
- May change depending on choosen option Door fitting assembly increase unit width by 25 mm each operating side 2
- 3
- Lo mun each operating side Height incl. 100 mm unit feet and 60 mm cable duct Controls cabinet arranged on top of unit, please add controls cabinet height (480 mm). *

Trisolair Type 59 with compressor refrigeration system

Unit Type	Ľ	W ²	H³	L11	L21	L31	W1	W2	H1	H2	H3	H4	H5	Weight ¹
59 18 01	4,110	730	1,530	730	2,650	730	580	505	1,370	485	580	580	485	770
59 26 01	4,750	730	1,850	730	3,290	730	580	505	1,690	485	900	580	580	1,050
59 36 01	4,750	1,050	1,850	730	3,290	730	900	825	1,690	485	900	580	580	1,280

Controls cabinet

Unit Type	$H \times W \times D^1$	Position
59 18 01	1,120 x 640 x 210	Wall mounting
59 26 01	1,120 x 640 x 210	Wall mounting
59 36 01	1,120 x 640 x 210	Wall mounting

Unit Type		52 12 01	52 18 01	52 26 01	52 36 01
Optimum flow rate	m³/h	1,200	1,800	2,600	3,600
Max. volume flow rate ¹	m³/h	1,600	2,500	3,200	5,000
Coefficient of power efficiency according to EN 13053:2012	%	73	73	76	75
Heat recovery rate according to EN 308	%	75	75	79	77
Total electrical power rating ²	kW	0.69	1.13	1.64	1.91
Max. current consumption ²	А	6.6	13.8	8.0	6.6
Operating voltage		1 / N / PE 2	230 V 50 Hz	3 / N / PE 4	100 V 50 Hz
Ext. pressure loss					
Supply and fresh air channel	Pa	300	300	300	300
Return and exhaust air channel	Pa	300	300	300	300
Sound power level ³					
Supply air vent	dB(A)	65	65	67	65
RA connection	dB(A)	58	60	61	60
Outside air vent	dB(A)	56	54	56	53
EA connection	dB(A)	53	57	59	59
Acoustic pressure at a distance of 1 m from the device ³	dB(A)	46	47	49	48
Fan units					
Rated motor input for supply air ⁴	kW	0.37	0.58	0.87	0.96
Rated motor input for return air ⁴	kW	0.32	0.55	0.77	0.95
SFP category supply air return air		2 2	2 2	3 2	1 2
Nominal rating supply air return air	kW	0.8 0.8	1.4 1.4	2.5 2.5	3.3 3.3
Inner specific fan power (SFP _{int}) ⁵	Ws/m ³	645	772	937	620
Efficiency classes according to EN 13053:2012					
Heat recovery class		H1	H1	H1	H1
Power consumption of fan motors SA RA		P1 P1	P1 P1	P1 P1	P1 P1
Air velocity class		V1	V1	V1	V1
Filtration according to DIN EN 779					
Outside air			F	7	
Return Air			N	15	
LPHW ⁶					
Heating capacity SA=22° C	kW	2.5	3.5	4.1	6.5
Heating capacity SA=30° C	kW	5.7	8.4	11.1	16.2
Heating capacity Defrost	kW	2.7	3.8	4.4	6.9
Water flow rate and pressure losses					
LPHW	m³/h kPa	0.25 4.8	0.51 4.9	0.50 4.8	0.88 5.4
LPHW (pump warm water) valve	m³/h kPa	0.15 5.9	0.22 4.9	0.31 9.3	0.42 6.9
Connections	,				
LPHW connection	DN	32	32	32	32
LPHW control valve connection	DN	10	10	10	10
Floor drains	DN	20	20	20	20
LPCW (optional) ⁷	,				
Cooling capacity SA ≈ 18° C	kW	5.5	7.6	10.7	15.8
Additional power consumption for supply air	W	60	50	120	170
LPCW connection	DN	32	32	32	32
LPCW control valve-connection	DN	15	20	25	25
Water flow rate and pressure losses					
LPCW	m³/h kPa	0.68 3.2	1.03 0.9	1.37 1.1	1.62 2.3
LPCW valve	m³/h kPa	0.68 7.3	1.03 17.0	1.37 11.7	1.62 16.3

Specifications of technical data relate to the optimum flow rate and return air condition 30° C / 54% r.h., outside air condition 15° C / 84% r.h. and standard density (1.204 kg/m³), unless otherwise specified.

3 at 250 Hz mid-band frequency
4 with average filter contamination
5 According EU guideline No. 1253/2014 [Ecodesign guideline]
6 FL = 50° C
7 note additional power consumption for supply air
8 FL = 6° C

May require alteration of the technical equipment Depends on configuration of measurement and control system/unit

Please seek approval of technical data and specifications prior to start of the planning process. With every single selection we do to your individual requirements our certified selection software automatically checks the Ecodesign compliance level 1 and 2.

Trisolai

1 2

Unit Type		59 18 01	59 26 01	59 36 01
Optimum flow rate	m³/h	1,800	2,600	3,600
Max. volume flow rate ¹	m³/h	2,500	3,200	5,000
Coefficient of power efficiency according to EN 13053:2012	%	73	76	75
Heat recovery rate according to EN 308	%	75	79	77
Total electrical power rating ²	kW	3.77	5.96	7.45
Max. current consumption ²	А	20.8	18.0	21.6
Operating voltage			3 / N / PE 400 V 50 Hz	
Ext. pressure loss				
Supply and fresh air channel	Pa	300	300	300
Return and exhaust air channel	Pa	300	300	300
Sound power level ³				
Supply air vent	dB(A)	63	66	63
RA connection	dB(A)	60	61	60
Outside air vent	dB(A)	55	58	54
EA connection	dB(A)	57	59	59
Acoustic pressure at a distance of 1 m from the device ³	dB(A)	48	51	49
Fan units				
Rated motor input for supply air ⁴	kW	0.62	0.97	107
Rated motor input for return air ⁴	kW	0.55	0.79	0.98
SFP category supply air l return air		3 2	3 2	212
Nominal rating supply air l return air	kW	14 14	25/25	20120
Inner specific fan power (SEP _{int}) ⁵	Ws/m ³	772	939	621
Compressor refrigeration system ⁶	-1			
Filling volume for refrigerant type R410A	ka	3.0	3.0	4.0
Rated compressor input	kW	2.6	4.2	5.4
Mechanical cooling capacity	kW	8.7	12.8	17.9
Refrigeration capacity	EER	3.3	3.0	3.3
Efficiency classes according to EN 13053:2012				
Heat recovery class		H1	H1	H1
Power consumption of fan motors SA RA		P1 P1	P1 P1	P1 P1
Air velocity class		V1	V1	V1
Filtration according to DIN EN 779				
Outside air			F7	
Return Air			M5	
LPHW ⁷				
Heating capacity SA=22° C	kW	3.5	4.0	6.5
Heating capacity SA=30° C	kW	8.4	11.1	16.1
Heating capacity Defrost	kW	3.6	5.1	7.3
Water flow rate and pressure losses				
LPHW	m³/h kPa	0.51 4.9	0.50 4.8	0.50 6.5
LPHW (pump warm water) valve	m ³ /h kPa	0.22 12.3	0.30 9.2	0.38 14.1
Connections		·	'	·
LPHW connection	DN	32	32	32
LPHW control valve connection	DN	10		
Floor drains	DN	20	20	20

Specifications of technical data relate to the optimum flow rate and return air condition 30° C / 54% r.h., outside air condition 15° C / 84% r.h. and standard density (1.204 kg/m³), unless otherwise specified.

May require alteration of the technical equipment Depends on configuration of measurement and control system/unit

3 at 250 Hz mid-band frequency

- a with average filter contamination
 According EU guideline No. 1253/2014 [Ecodesign guideline]
 At RA = 26° C/55 % r.h., OA = 32° C/40% r.h. and standard density, SA ≈ 17° C

7 FL = 70° C

Please seek approval of technical data and specifications prior to start of the planning process. With every single selection we do to your individual requirements our certified selection software automatically checks the Ecodesign compliance level 1 and 2.

1 2

Double recuperative air conditioning unit with two-stage heat recovery

Automatically selects the most economical operating mode!

Dosolair 54

AIR VOLUME FLOW: 4,000 - 23,100 m³/h

At a glance:

- For heat and cooling recovery Energy-saving EC fans Intelligent air bypass duct Two-stage supply air filtration Integrated defrosting function Compact design Integrated control and regulation system, compatible with all conventional building management systems
- Freely configurable HVAC system

 Fulfils the requirements of VDI 6022 Units in the Dosolair 54 series are ideally suited for return air from processes. The structural design allows a complete cleaning of the heat recovery system very easily. The recuperator of polypropylene is pollutant resistant, microbially not metabolisable and allows the use in many different areas, for example in industrial and kitchen applications.

nformation on page 6. Check ongoing validity of certificate www.eurovent-certification.com or www.certiflash.com

rlt 👜

ECODESIGN

2016 + 2018

Further performance parameters and options:

- Filtering the air in any operating mode
- Corrosion-free heat exchanger made from polypropylene
- Pumped hot water heating coil
- Thermal bridge factor TB1
 - Individually controllable perforance parameters
- Complete unit, ready to connect, contains all structural elements for comfort air conditioning, including all control and regulation fittings
- Intensive quality inspection with factory test run

Options

- Recirculation air heating damper
- Pumped chilled water cooling coil
- Pressure reversal
- Attenuator
- Outdoor installation
- Remote maintenance
- And many more

menerga Technical Catalogue v3.00/2016 | Subject to technical modifications. © Menerga GmbH | www.menerga.com

All recuperative heat exchangers tend to

ice over in the exhaust air section in case

of low outside temperatures. In defrost

operation, the OA-SA bypass opens, re-

ducing the outside air flow rate going

.

Functional

description

As the outside air temperatures rise, the heat recovery requirement is reduced. The OA/SA bypass damper, which runs along the entire depth of the device, is

Free cooling

Defrosting Circuit

If the outside temperatures continue to rise, the heat recovery is bypassed. The structural design of the OA/SA bypass ensures that the pressure losses within

Summertime conditions

If the outside temperature rises above the return temperature, the highly efficient heat exchanger is used as a "cooling recovery system".

Recirculation Air Operation (heating)*

In recirculation air mode, the outdoor and exhaust air dampers are closed. The air is heated via the heating coil. Rooms which are not used all of the time, such as lecture halls or sports halls, the unit are low and that the power consumption of both fans in bypass mode is also low.

Wintertime conditions

as required.

regulated.

temperature.

In case of low outside temperatures

the system operates completely in heat recovery mode. The standard heating coil compensates for ventilation and transmission heat losses of the building

through the recuperator. The heat con-

tained in the return air melts any ice in

routed past the recuperator is precisely

continuously regulated in order to

achieve the desired supply air

the heat exchanger, while the airflow rate

The warm outside air is cooled by the return air.

can therefore be quickly heated before being used.

* only possible with optional recirculation air heating damper

1 Recirculation air heating damper (additional equipment)

Dosolair Type 54

System dimensions and weights

Important! Where a system is operated in parallel, the supply air and return air ducts of the two units have to be brought together.

Where units are run in parallel, each unit has a controls cabinet.

Mirror-image design possible.

Unit type	Ľ	₩²	H³	L11	L2 ¹	L31	W1	W2	H1	H2	Weight ¹
54 06 01	5,630	790	2,340	1,400	3,630	600	580	420	2,160	900	1,500
54 10 01	5,630	1,110	2,340	1,400	3,630	600	900	740	2,160	900	1,800
54 13 01	5,790	1,430	2,340	1,560	3,630	600	1,220	1,060	2,160	900	2,150
54 16 01	5,790	1,750	2,340	1,560	3,630	600	1,540	1,380	2,160	900	2,450
54 19 01	5,790	2,070	2,340	1,560	3,630	600	1,860	1,700	2,160	900	2,750
54 25 01	6,430	2,070	2,980	1,560	4,270	600	1,860	1,700	2,800	1,220	3,650
54 32 01	7,230	2,070	3,620	1,560	5,070	600	1,860	1,700	3,440	1,540	4,500
54 36 01	7,230	2,390	3,620	1,560	5,070	600	2,180	2,020	3,440	1,540	5,400

Largest transport unit

Unit type	L1	W	H³	Weight ¹
54 06 01	3,630	790	2,340	900
54 10 01	3,630	1,110	2,340	1,070
54 13 01	3,630	1,430	2,340	1,250
54 16 01	3,630	1,750	2,340	1,450
54 19 01	3,630	2,070	2,340	1,630
54 25 01	4,270	2,070	2,980	2,250
54 32 01	5,070	2,070	3,620	3,000
54 36 01	5,070	2,390	3,620	3,400

Controls cabinet

Unit Type	$H \ge W \ge D^1$	Position at unit
54 06 01	1,120 x 640 x 210	SA/RA side
54 10 01	1,120 x 640 x 210	SA/RA side
54 13 01	1,120 x 640 x 210	SA/RA side
54 16 01	1,120 x 640 x 210	SA/RA side
54 19 01	1,120 x 640 x 210	SA/RA side
54 25 01	1,120 x 640 x 210	SA/RA side
54 32 01	1,120 x 640 x 210	SA/RA side
54 36 01	1,280 x 640 x 210	SA/RA side

For service work, a clearance corresponding to dimension W is required on the operating side of the unit. If dimension W is smaller than one metre, please leave a clearance of one metre. For service work above the unit, please allow 50 mm working height clearance above the cable duct.

Please comply with the dimensions for body size, air duct connections and electrical switch cabinet.

All lengths are given in mm, weights in kg, weight incl. controls cabinet.

1 May change depending on choosen option

- 2 Door fitting assembly increase unit width by
- 65 mm each operating side 2 Height incl. 120 mm base
- frame and 60 mm cable duct

3 transportation units are supplied, including controls cabinet. Further partitioning for smaller apertures possible (at extra cost).

Unit Type		54 06 01	54 10 01	54 13 01	54 16 01	54 19 01	54 25 01	54 32 01	54 36 01	54 xx xx
Optimum flow rate	m³/h	4,000	6,000	7,900	9,800	11,800	15,800	19,900	23,100	< 40,800
Coefficient of power efficiency acc. to EN 13053:2012	%	67	67	68	68	68	68	70	70	
Heat recovery rate according to EN 308	%	70	70	70	71	71	70	73	73	
Total electrical power rating ¹	kW	2.55	3.59	4.50	5.79	8.05	10.42	15.28	17.46	
Max. current consumption ¹	А	8.0	9.6	16.0	16.0	17.4	32.0	32.0	37.6	
Operating voltage				3	3 / N / PE 4	400 V 50 H	Z	,		
Ext. pressure loss										
Supply and fresh air channel	Pa	300	300	300	300	400	400	500	500	
Return and exhaust air channel	Pa	300	300	300	300	400	400	500	500	
Sound power level ²										
Supply air vent	dB(A)	66	71	67	72	80	71	78	80	
RA connection	dB(A)	64	68	64	67	73	67	74	78	
Outside air vent	dB(A)	57	62	57	61	66	61	66	70	
EA connection	dB(A)	61	66	62	66	73	66	75	79	
Acoustic pressure at distance of 1 m from device ²	dB(A)	52	57	53	58	65	57	65	69	
Fan units										
Rated motor input for supply air ³	kW	1.34	2.00	2.49	3.04	4.17	5.48	7.94	9.04	
Rated motor input for return air ³	kW	1.21	1.59	2.01	2.75	3.88	4.94	7.34	8.42	
SFP category supply air return air		1 2	1 2	1 1	1 2	1 3	1 2	2 3	2 3	
Nominal rating supply air return air	kW	2.5 2.5	2.9 2.9	5.0 5.0	5.0 5.0	6.0 5.0	10.0 10.0	10.0 10.0	12.0 12.0	est.
Inner specific fan power (SFP _{int}) ⁴	Ws/m ³	777	753	693	678	691	572	672	666	nba
Efficiency classes according to EN 13053:2012										on r
heat recovery class		H2	H2	H2	H2	H2	H2	H2	H2	đ
Power consumption of fan motors SA RA		P1 P1	P1 P1	P1 P1	P1 P1	P1 P1	P1 P1	P1 P1	P2 P1	tails
Air velocity class		V2	V2	V2	V2	V2	V2	V2	V2	l de
Filtration according to DIN EN 779										nica
Supply air Outside air					F7	M5				Tech
Return Air					N	15				
LPHW										
Heating capacity SA=22° C ⁵	kW	11.0	16.2	21.2	26.0	31.1	43.5	46.2	53.5	
Heating capacity SA=30° C ⁵	kW	21.7	32.4	42.7	52.5	62.8	86.0	99.6	115.7	
Heating capacity Defrost 5,6	kW	10.9	16.3	21.3	26.6	31.9	41.3	52.2	60.8	
Water flow rate and pressure losses at heating capa	city SA=22	° C								
LPHW	m³/h kPa	0.89 4.4	1.39 4.0	2.14 3.3	2.13 3.8	2.14 4.4	3.87 3.6	4.76 3.3	4.79 3.6	
LPHW (pump warm water) valve	m³/h kPa	0.65 6.8	0.92 5.3	1.23 3.8	1.40 5.0	1.58 6.3	2.31 5.3	2.61 4.4	2.93 5.5	
Connections										
LPHW connection	DN	32	32	40	40	40	50	50	65	
LPHW control valve connection	DN	15	15	15	15	20	25	25	25	
Condensate drainage	DN	40	40	40	40	40	40	40	40	
LPCW (optional) 7										
Cooling capacity SA ≈ 18° C ⁸	kW	17.3	31.5	42.3	53.2	64.0	84.0	108.7	130.2	
LPCW connection	DN	40	50	50	65	80	80	80	100	
Water flow rate and pressure losses										
LPCW	m³/h kPa	2.48 6.1	4.51 20.0	6.05 23.3	7.61 22.3	9.15 21.9	12.01 27.5	15.55 23.1	18.62 35.0	
LPCW valve	m³/h kPa	2.48 6.1	4.51 20.3	6.05 23.4	7.61 22.6	9.15 32.7	12.01 36.1	15.55 24.4	18.62 55.5	

Specifications of technical data relate to the optimum flow rate and return air condition 22° C / 40% r.h., outside air condition -12° C / 90% r.h. and standard density (1.204 kg/m³), unless otherwise specified.

depends on configuration of measurement and control

according EU guideline No. 1253/2014 [Ecodesign guideline]
FL= 70° C
at OA=-15° C, SA=18° C, 66% optimum flow rate and the default fraction active defrost function note additional power consumption for supply air $FL = 6^{\circ} C$, $RA = 26^{\circ} C$; 55 % r.h. and $OA = 32^{\circ} C$; 40% r.h.

system/unit at 250 Hz mid-band frequency 2

1

3 with average filter contamination 7

8

Subject to technical methods and the subject to technical modifications. © Menerga GmbH | www.menerga.com

Please seek approval of technical data and specifications prior to start of the planning process. With every single selection we do to your individual requirements our certified selection software automatically checks the Ecodesign compliance level 1 and 2.

Comfort air conditioning unit with double plate heat exchanger and adiabatic evaporative cooling system

Automatically selects the most economical operating mode!

Adsolair 56/58

AIR VOLUME FLOW: 2,600 - 23,100 m³/h

At a glance:

For heat and cooling recovery Energy-saving EC fans Integrated compressor refrigeration system (58 series) Intelligent air bypass duct Two-stage supply air filtration Adiabatic evaporative cooling - Cooling without electricity Integrated defrosting function Compact design Freely configurable HVAC system Fulfils the requirements of **VDI 6022**

Requirements with high thermal loads can be ideally met with the different cooling options of the units in series Adsolair. Series 56 uses adiabatic evaporative cooling an achieves to cool up to 12 K^{*} with water. At series 58 the total cooling capacity is further enhanced with an integrated compression refrigeration system.

information on page 6. Check ongoing validity of certificate www.eurovent-certification.com or www.certiflash.com

SIT

ECODESIGN

2016 + 2018

Further performance parameters and options:

EUROVENI

REORMANICE

- Filtering the air in any operating mode
- Corrosion-free heat exchanger made from polypropylene
- Pumped hot water heating coil
- Thermal bridge factor TB1
- Individually controllable performance parameters
- Complete unit, ready to connect, contains all structural elements for comfort air conditioning, including all control and regulation fittings
- Intensive quality inspection with factory trial run

Options

- Recirculation air heating damper
- Pumped chilled water cooling coil (56 series)
- Pressure reversal
- Sound absorber
- Reversible refrigeration system (58 series)
- Outdoor installation
- Hot water extraction, to use waste heat for heating purposes (58 series)
- Increased cooling capacity
- Remote maintenance
- And many more

Wintertime conditions

In case of low outside temperatures the system operates completely in heat recovery mode. The standard heating coil (LPHW) compensates for ventilation and transmission heat losses of the building as required.

Defrosting Circuit

All recuperative heat exchangers tend to ice over in the exhaust air section in case of low outside temperatures. In defrost operation, the OA-SA bypass opens, reducing the outside air flow rate

Transitional Period

As the outside air temperatures rise, the heat recovery requirement is reduced. The OA/SA bypass damper, which runs along the entire depth of the device, is

Free cooling

If the outside temperatures continue to rise, the heat recovery is bypassed. The structural design of the OA/SA bypass ensures that the pressure losses within

Summertime conditions

If the outside temperature rises above the return temperature, the highly efficient heat exchanger is used as a "cooling recovery system".

Indirect adiabatic evaporative cooling

The Menerga Adsolair principle uses the advantages of indirect adiabatic evaporative cooling without the disadvantages of supply air humidification. A major component of the Adsolair principle is the double plate heat exchanger, in which the return air is "adiabatically" cooled. In return, the outside air is cooled by the humid, cold exhaust air, without being humidified.

Recirculation Air Operation (heating)*

In recirculation air mode, the outdoor and exhaust air dampers are closed. The air is heated via the heating coil. Rooms which are not used all of the time, such as

going through the recuperator. The heat contained in the return air melts any ice in the heat exchanger, while the airflow rate routed past the recuperator is regulated as required.

continuously regulated in order to achieve the desired supply air temperature.

the unit are low and that the power consumption of both fans in bypass mode is also low.

The warm outside air is cooled by the return air.

The high efficiency rate lies in the fact that both processes (adiabatic evaporative cooling of the return air + cooling of the outside air) take place simultaneously in the heat exchanger. The high degree of temperature efficiency of the double plate heat exchanger allows significant cooling of the OA-SA by over 12 K*. If required, the compressor refrigeration system will switch on and cool the supply air even further.

lecture halls or sports halls, can therefore be quickly heated before being used.

only possible with optional recirculation air heating damper

Adsolai

* at OA = 34° C / 40% r.h.

1 Recirculation air heating damper (additional equipment)

Adsolair Type 56

System dimensions and weights

Important! Where a system is operated in parallel, the supply air and return air ducts of the two units have to be brought together.

Where units are run in parallel, each unit has a controls cabinet.

Proportions/details vary depending on system size.

Mirror-image design possible.

Unit type	Ľ	W ²	H³	L11	L21	L31	W1	W2	H1	H2	Weight ¹
56 03 01	4,350	790	1,700	1,240	2,510	600	580	510	1,520	580	1,100
56 05 01	4,510	1,110	1,700	1,400	2,510	600	900	830	1,520	580	1,350
56 06 01	5,630	790	2,340	1,400	3,630	600	580	420	2,160	900	1,550
56 10 01	5,630	1,110	2,340	1,400	3,630	600	900	740	2,160	900	1,850
56 13 01	5,790	1,430	2,340	1,560	3,630	600	1,220	1,060	2,160	900	2,200
56 16 01	5,790	1,750	2,340	1,560	3,630	600	1,540	1,380	2,160	900	2,520
56 19 01	5,790	2,070	2,340	1,560	3,630	600	1,860	1,700	2,160	900	2,800
56 25 01	6,430	2,070	2,980	1,560	4,270	600	1,860	1,700	2,800	1,220	3,800
56 32 01	7,230	2,070	3,620	1,560	5,070	600	1,860	1,700	3,440	1,540	4,650
56 36 01	7,230	2,390	3,620	1,560	5,070	600	2,180	2,020	3,440	1,540	5,500

Largest transport unit *

Unit Type	Ŀ	W ²	H³	Weight ¹
56 03 01	2,510	790	1,700	600
56 05 01	2,510	1,110	1,700	750
56 06 01	3,630	790	2,340	950
56 10 01	3,630	1,110	2,340	1,120
56 13 01	3,630	1,430	2,340	1,300
56 16 01	3,630	1,750	2,340	1,500
56 19 01	3,630	2,070	2,340	1,680
56 25 01	4,270	2,070	2,980	2,400
56 32 01	5,070	2,070	3,620	3,150
56 36 01	5,070	2,390	3,620	3,500

🗩 Operating weight 🛛 🔲 Con

Weight¹

1,140

1,390

1,600

1,920

2,290

2,630

2,940 3,990

4,880

5,790

Unit Type

56 03 01

56 05 01

56 06 01

56 10 01

56 13 01

56 16 01

56 19 01

56 25 01 56 32 **01**

56 36 01

Contro	ls ca	binet
 contro	15 CU	Unice

Unit Type	$H \ge W \ge D^1$	Position at unit
56 03 01	1,120 x 640 x 210	SA/RA side
56 05 01	1,120 x 640 x 210	SA/RA side
56 06 01	1,120 x 640 x 210	SA/RA side
56 10 01	1,120 x 640 x 210	SA/RA side
56 13 01	1,120 x 640 x 210	SA/RA side
56 16 01	1,120 x 640 x 210	SA/RA side
56 19 01	1,120 x 640 x 210	SA/RA side
56 25 01	1,120 x 640 x 210	SA/RA side
56 32 01	1,280 x 640 x 210	SA/RA side
56 36 01	1,280 x 640 x 210	SA/RA side

For service work, a clearance corresponding to dimension W is required on the operating side of the unit. If dimension W is smaller than one metre, please leave a clearance of one metre. For service work above the unit, please allow 50 mm working height clearance above the cable duct.

Please comply with the dimensions for body size, air duct connections and electrical switch cabinet.

All lengths are given in mm, weights in kg, weight incl. controls cabinet.

- May change depending on choosen option Door fitting assembly increase unit width by 65 mm each operating side
- 2
- incl. 120 mm base frame, plus 60 mm cable duct 3

Partitioning of unit for smaller apertures possible (at extra cost).

Unit Type		56 03 01	56 05 01	56 06 01	56 10 01	56 13 01	561601
Optimum flow rate	m³/h	2,600	3,900	4,000	6,000	7,900	9,800
Coefficient of power efficiency according to FN 13053-2012	0/0	69	69	67	67	68	68
Heat recovery rate according to EN 308	%	72	72	70	70	70	71
Total electrical power rating ¹	kW	2 09	2.83	2.87	4 12	5 14	6.21
Max, current consumption ¹	A	91	91	91	10.7	17.4	17.4
		2.1	2.1	3 / N / PF 4	100 V 50 Hz	17.1	17.1
Ext. pressure loss				5711712	100 1 50 112		
Supply and fresh air channel	Pa	300	300	300	300	300	300
Return and exhaust air channel	Pa	300	300	300	300	300	300
	10	500	500	500	500	500	500
Supply air vent	dB(A)	68	65	65	73	67	72
RA connection		67	65	64	69	64	68
Outside aisvent		50	57	57	67	57	60
EA connection		50 61	57 61	67	67	63	67
Acoustic proscure at a distance of 1 m from the device 2		54	52	52	57	51	07 50
For write	UD(A)	54	JZ	JZ	77	54	0
Pan Units Dated mater input for supply pir 3	1414	0.07	1.77	1 7 /	2.00	2.40	2.04
Rated motor input for supply air 3	K VV	0.97	1.30	1.34	2.00	2.49	3.04
Rated motor input for return air	KVV	0.82	1.17	1.23	1.82	2.25	2.//
SFP category supply air return air	1.147	1 2	1 2	1 2	1 2	1 2	1 2
Nominal rating supply air return air	KW	2.5 2.5	2.5 2.5	2.5 2.5	2.9 2.9	5.0 5.0	5.0 5.0
Inner specific ran power (SPPint) *	ws/m	863	824	//5	752	693	677
Evaporative cooling ⁵	1.1.1	0.1	40.7	10.4	205	27.2	22.0
Cooling capacity of adiabatic evaporative cooling system °	kW	9.1	13./	13.6	20.5	27.2	33.9
Rated pump input for evaporative cooling	kW	0.3	0.3	0.3	0.3	0.4	0.4
Efficiency classes according to EN 13053:2012	1						
Heat recovery class		H2	H2	H2	H2	H2	H2
Power consumption of fan motors SA RA		P1 P1	P1 P1	P1 P1	P1 P1	P1 P1	P1 P1
Air velocity class		VI	V1	V2	V2	V2	V2
Filtration according to DIN EN 779	1						
Supply air Outside air				F7	M5		
Return Air				N	15		
LPHW							
Heating capacity SA=22° C ⁷	kW	6.4	9.6	11.0	16.2	21.1	26.0
Heating capacity SA=30° C ⁷	kW	13.4	20.1	21.7	32.4	42.6	52.5
Heating capacity Defrost ^{7,8}	kW	6.8	10.4	10.9	16.3	21.3	26.6
Water flow rate and pressure losses at heating capacity SA=22° C	3						
LPHW	m²/h kPa	0.50 5.2	0.88 4.2	0.88 4.7	1.38 4.3	2.13 3.5	2.16 4.2
LPHW valve	m³/h kPa	0.39 5.9	0.57 5.2	0.65 6.8	0.92 5.3	1.23 3.8	1.40 5.0
Connections	1						
LPHW connection	DN	32	32	32	32	40	40
LPHW control valve connection	DN	15	15	15	15	15	15
Clean water connection ⁹	DN	15	15	15	15	15	20
Condensate / slurry drain	DN	40	40	40	40	40	40
Floor drains	DN	40	40	40	40	40	40
LPCW (optional) ¹⁰							
Cooling capacity SA \approx 17° C ¹¹	kW	8.7	13.3	14.1	21.6	29.0	36.6
LPCW connection	DN	32	40	40	50	50	65
LPCW control valve-connection	DN	15	20	20	25	32	40
Water flow rate and pressure losses							
LPCW	m³/h kPa	1.24 8.9	1.91 8.4	2.02 10.7	3.08 10.2	4.14 11.9	5.23 11.5
LPCW valve	m³/h kPa	1.24 9.6	1.91 9.2	2.02 16.3	3.08 14.9	4.14 17.2	5.23 17.5
Specifications of technical data relate to the optimum 4 according EU flow rate and return air condition 22° C / 40% r.h., [Ecodesign gu outside air condition -12° C / 90% r.h. and standard density 5 water quality (1.204 kg/m ³), unless otherwise specified. VDI 3803 tabl	guideline No. 12 ideline] of make-up wat e B3 with a bact	53/2014 er corresponds eria count < 10	to 0 CFU/ml,	 may requir Note higher FL = 6° C, r outside air 	e of alteration er power consu eturn air conditi condition 32° C	of technical equ mption of SA fa on 26° C / 55% / 40% r.h	uipment in units or.h.,

water quality of make-up water corresponds to VDI 3803 table B3 with a bacteria count < 100 CFU/ml, water hardness range "middle". for RA 26° C; 55% r.h. and OA 32° C; 40% r.h. FL = 70° C At OA=-15° C, SA=18° C, 66% optimum flow rate and active defrost function 2 bac return programs required at 25 1/min flow rate.

6 7

8

9 2 bar system pressure required at 25 l/min flow rate.

control system/unit at 250 Hz mid-band frequency

with average filter contamination

1

2 3

dependent on configuration of measurement and

menerga Technical Catalogue v3.00/2016 | Subject to technical modifications. © Menerga GmbH | www.menerga.com

Please seek approval of technical data and specifications prior

to start of the planning process. With every single selection we do to your individual requirements our certified selection

software automatically checks the Ecodesign compliance

level 1 and 2.

Unit Type		56 19 01	562501	563201	56 36 01
Optimum flow rate	m³/h	11,800	15,800	19,900	23,100
Coefficient of power efficiency according to EN 13053:2012	%	68	68	70	70
Heat recovery rate according to EN 308	%	71	70	73	73
Total electrical power rating ¹	kW	8.58	10.92	15.78	18.62
Max. current consumption ¹	А	19.0	33.6	36.4	39.7
Operating voltage			3 / N / PE 4	100 V 50 Hz	
Ext. pressure loss					
Supply and fresh air channel	Pa	400	400	500	500
Return and exhaust air channel	Pa	400	400	500	500
Sound power level ²					
Supply air vent	dB(A)	80	71	78	80
RA connection	dB(A)	73	68	74	77
Outside air vent	dB(A)	66	60	66	69
EA connection	dB(A)	74	67	75	79
Acoustic pressure at a distance of 1 m from the device ²	dB(A)	65	57	70	69
Fan units	(,				
Rated motor input for supply air ³	kW	4,17	5.44	7.88	9.04
Rated motor input for return air ³	kW	3 91	4 98	7 40	8 4 8
SEP category supply air l return air	15.9.9	1 3	112	213	213
Nominal rating supply air l return air	kW	60150	1001100	1001100	1201120
Inner specific fan power (SFP _{int})	Ws/m ³	690	566	665	665
Evaporative cooling ⁴					
Cooling capacity of adiabatic evaporative cooling system ⁵	kW	40.7	53.9	70.8	82.4
Rated pump input for evaporative cooling	kW	0.50	0.50	0.50	1.1
Efficiency classes according to EN 13053-2012					
Heat recovery class		H2	H2	H2	H2
Power consumption of fan motors SA I RA		P1 P1	P1 P1	P1 P1	P1 P1
Air velocity class		V2	V2	V2	V2
Filtration according to DIN FN 779					
Supply air Outside air			F7 I	M5	
Return Air		M5			
LPHW					
Heating capacity SA=22° C ⁶	kW	31.1	43.5	46.2	53.5
Heating capacity SA=30° C ⁶	kW	62.8	86.0	99.6	115.7
Heating capacity Defrost ^{6,7}	kW	31.9	41.3	52.2	60.8
Water flow rate and pressure losses at heating capacity SA=22° C					
	m ³ /h l kPa	2.14 4.8	3.86 3.9	4.77 3.5	4.77 3.9
LPHW (pump warm water) valve	m ³ /h kPa	1.58 6.3	2.31 5.3	2.61 4.4	2.93 5.5
Connections		•	•		
LPHW connection	DN	40	50	50	65
LPHW control valve connection	DN	20	25	25	25
Clean water connection ⁸	DN	20	20	20	20
Condensate / slurry drain	DN	40	40	40	40
Floor drains	DN	40	40	40	40
LPCW (optional) ^{9,10}					
Cooling capacity $SA \approx 17^{\circ} C^{11}$	kW	43.7	57.8	72.7	88.5
	1.5.4.4		57.0	11	100
TPUVV CONDECTION	ПИ	80	80	80	11111
LPCW control valve-connection	DN DN	80	80 50	80 50	50
LPCW connection LPCW control valve-connection Water flow rate and pressure losses	DN DN	80 40	80 50	80 50	50
LPCW control valve-connection Water flow rate and pressure losses LPCW	DN DN m ³ /h LkPa	80 40	80 50	80 50	50
LPCW connection UPCW control valve-connection Water flow rate and pressure losses LPCW LPCW valve	$\frac{DN}{DN}$ $\frac{m^3/h kPa}{m^3/h kPa}$	80 40 6.24 11.1 6.24 15.2	80 50 8.26 14.0 8 26 17 1	80 50 10.40 11.3	100 50 12.66 17.6

spectroautons or technical data feidte to the optimum flow rate and return air condition 22° C / 40% r.h., outside air condition -12° C / 90% r.h. and standard density (1.204 kg/m³), unless otherwise specified.

dependent on configuration of measurement and 1 control system/unit at 250 Hz mid-band frequency

2

At $OA = -15^{\circ}$ C At $OA = -15^{\circ}$ C, SA=18^{\circ} C, 66% optimum flow rate and active defrost function 9 2 bar system pressure required at 25 l/min flow rate.

[Ecodesign guideline]

5

6 7

8

(Ecodesign guideline) water quality of make-up water corresponds to VDI 3803 table B3 with a bacteria count < 100 CFU/ml, water hardness range "middle". for RA 26° C; 55 % r.h. and OA 32° C; 40% r.h.

Note higher power consumption of SA fan units
 FL = 6° C, return air condition 26° C / 55% r.h., outside air condition 32° C / 40% r.h

Please seek approval of technical data and specifications prior to start of the planning process. With every single selection we do to your individual requirements our certified selection software automatically checks the Ecodesign compliance level 1 and 2.

- 3 with average filter contamination

menerga Technical Catalogue v3.00/2016 | Subject to technical modifications. © Menerga GmbH | www.menerga.com

Adsolair Type 58

System dimensions and weights

Important! Where a system is operated in parallel, the supply air and return air ducts of the two units have to be brought together.

Where units are run in parallel, each unit has a controls cabinet.

Mirror-image design possible.

Proportions/details vary depending on system size.

Unit Type	Ľ	W²	H³	L11	L21	L31	W1	W2	H1	H2	Weight ¹
58 03 01	4,670	790	1,700	1,240	2,510	920	580	510	1,520	580	1,300
58 05 01	4,830	1,110	1,700	1,400	2,510	920	900	830	1,520	580	1,600
58 06 01	5,950	790	2,340	1,400	3,630	920	580	420	2,160	900	1,780
58 10 01	5,950	1,110	2,340	1,400	3,630	920	900	740	2,160	900	2,100
58 13 01	6,110	1,430	2,340	1,560	3,630	920	1,220	1,060	2,160	900	2,550
58 16 01	6,110	1,750	2,340	1,560	3,630	920	1,540	1,380	2,160	900	2,830
58 19 01	6,110	2,070	2,340	1,560	3,630	920	1,860	1,700	2,160	900	3,300
58 25 01	6,750	2,070	2,980	1,560	4,270	920	1,860	1,700	2,800	1,220	4,400
58 32 01	7,550	2,070	3,620	1,560	5,070	920	1,860	1,700	3,440	1,540	5,350
58 36 01	7,550	2,390	3,620	1,560	5,070	920	2,180	2,020	3,440	1,540	6,350

Largest transport unit *

Unit Type	Ľ	W²	H³	Weight ¹
58 03 01	2,510	790	1,700	620
58 05 01	2,510	1,110	1,700	770
58 06 01	3,630	790	2,340	980
58 10 01	3,630	1,110	2,340	1,170
58 13 01	3,630	1,430	2,340	1,370
58 16 01	3,630	1,750	2,340	1,580
58 19 01	3,630	2,070	2,340	1,770
58 25 01	4,270	2,070	2,980	2,530
58 32 01	5,070	2,070	3,620	3,350
58 36 01	5,070	2,390	3,620	3,750

Operating weight

Unit Type	Weight ¹
58 03 01	1,340
58 05 01	1,640
58 06 01	1,830
58 10 01	2,170
58 13 01	2,640
58 16 01	2,940
58 19 01	3,440
58 25 01	4,590
58 32 01	5,580
58 36 01	6,990

Controls cabinet

Unit Type	$H \times W \times D^1$	Position at unit
58 03 01	1,280 x 640 x 210	SA/RA side
58 05 01	1,280 x 640 x 210	SA/RA side
58 06 01	1,280 x 640 x 210	SA/RA side
58 10 01	1,280 x 640 x 210	SA/RA side
58 13 01	1,280 x 640 x 210	SA/RA side
58 16 01	1,280 x 640 x 210	SA/RA side
58 19 01	1,280 x 640 x 210	SA/RA side
58 25 01	1,280 x 640 x 210	SA/RA side
58 32 01	1,280 x 640 x 210	SA/RA side
58 36 01	1,600 x 640 x 250	SA/RA side

For service work, a clearance corresponding to dimension W is required on the operating side of the unit. If dimension W $\!\!\!\!$ is smaller than one metre, please leave a clearance of one metre. For service work above the unit, please allow 50 mm working height clearance above the cable duct.

Please comply with the dimensions for body size, air duct connections and electrical switch cabinet.

All lengths are given in mm, weights in kg, weight incl. controls cabinet.

- May change depending on choosen option
 Door fitting assembly increase unit width by 65 mm each operating side
 incl. 120 mm base frame, plus 60 mm cable duct

Partitioning of unit for smaller apertures possible (at extra cost)

Lipit Type		59 02 01	59.05.01	59.06.01	59 10 01	59 12 01	59 16 01
Ontroppe	m ³ /h	2 600	3 000	4 000	6 000	7 000	9800
Tetel se dise sees site 1		2,000	3,900	4,000	0,000	7,900	9,000
For the second sec	KVV FFD	18.0	25.8	23.9	30.8 11.2	40.0	59.Z
Energy Efficiency Ratio **	EER 0/	7.8	9.6	10.4	11.2	12.3	10.4
	%	69	69	6/	6/ 70	08 70	08 71
Heat recovery rate according to EN 308	%0	12	72	70	70	/0	/
	KVV	4.26	5.43	5.08	7.42	8.92	11.97
Max. current consumption ³	A	16.1	17.3	16.4	21.2	29.4	34.6
				3 / N / PE 4	100 V 50 HZ		
Ext. pressure loss	0	200	200	200	200	200	200
Supply and fresh air channel	Pa	300	300	300	300	300	300
Return and exhaust air channel	Pa	300	300	300	300	300	300
Sound power level ⁴							
Supply air vent	dB(A)	70	67	67	72	68	75
RA connection	dB(A)	63	64	65	70	65	68
Outside air vent	dB(A)	57	56	56	60	55	60
EA connection	dB(A)	63	62	62	68	64	69
Acoustic pressure at a distance of 1 m from the device ⁴	dB(A)	55	53	53	58	55	60
Fan units							
Rated fan input for supply air ⁵	kW	1.09	1.50	1.49	2.21	2.75	3.34
Rated fan input for return air ⁵	kW	0.87	1.23	1.29	1.91	2.37	2.93
SFP category supply air return air		2 3	2 2	2 2	1 2	1 2	1 2
Nominal rating supply air return air	kW	2.5 2.5	2.5 2.5	2.5 2.5	2.9 2.9	5.0 5.0	5.0 5.0
Inner specific fan power (SFPint) 6	Ws/m	865	815	765	747	692	672
Evaporative cooling ^{1,7}							
Cooling capacity of adiabatic evaporative cooling system	kW	9.1	13.7	13.6	20.5	27.2	33.9
Rated pump input for evaporative cooling	kW	0.3	0.4	0.4	0.5	0.5	1.1
Compressor refrigeration system							
Filling volume for refrigerant type R410A	kg	3.0	4.0	4.0	5.0	7.0	8.0
Rated compressor input	kW	2.0	2.3	1.9	2.8	3.3	4.6
Mechanical cooling capacity ^{1,8}	kW	8.9	12.1	10.3	16.3	19.4	25.3
Efficiency classes according to EN 13053:2012							
Heat recovery class		H2	H2	H2	H2	H2	H2
Power consumption of fans SA RA		P1 P1	P1 P1	P1 P1	P1 P1	P1 P1	P1 P1
Air velocity class		V1	V1	V2	V2	V2	V2
Filtration according to DIN EN 779							
Supply air Outside air				F7	M5		
Return Air				N	15		
LPHW							
Heating capacity SA=22° C ⁹	kW	6.3	9.4	10.9	16.1	21.0	25.9
Heating capacity SA=30° C ⁹	kW	13.3	20.0	21.7	32.3	42.5	52.4
Heating capacity Defrost ^{9,10}	kW	6.8	10.4	10.6	16.3	21.3	26.5
Water flow rate and pressure losses at beating capacity SA=22° C							
LPHW	m ³ /h l kPa	050152	088142	088148	138443	213135	216142
LPHW (pump warm water) valve	m ³ /h1kPa	0.38 5.8	0.57 5.1	0.5615.0	0.9215.3	1.23 3.8	1.40 4.9
Connections	, , -	1 2	1	1 2	1.0.0	1 2	
LPHW connection	DN	32	32	32	32	40	40
LPHW control valve connection	DN	15	15	15	15	15	15
Clean water connection ¹¹	DN	15	15	15	15	15	20
Condensate / slurry drain	DN	40	40	40	40	40	40
Floor drains	DN	40	40	40	40	40	40
		10	10	10	10	10	10

Specifications of technical data relate to the optimum flow rate and return air condition 22° C / 40% r.h., outside air condition -12° C / 90% r.h. and standard density (1.204 kg/m³), unless otherwise specified.

for RA 26° C; 55 % r.h. and OA 32° C; 40% r.h. 1

2

- incl. evaporative cooling capacity taking into account power consumption for adiabatic pump(s) dependent on configuration of measurement and
- 3 control system/unit
- 4 5
- 6
- at 250 Hz mid-band frequency with average filter contamination according EU guideline No. 1253/2014 [Ecodesign guideline] water quality of make-up water corresponds to VDI 3803 table B3 with a bacteria count < 100 CFU/ml, water hardness range "middle". at supply air ≈ 17° C FL = 70° C 7
- 8 9

10 At OA=-15° C, SA=18° C, 66% of optimum flow rate and active defrost function

11 2 bar system pressure required at 25 l/min flow rate

Please seek approval of technical data and specifications prior to start of the planning process. With every single selection we do to your individual requirements our certified selection software automatically checks the Ecodesign compliance level 1 and 2.

Adsolai

menerga Technical Catalogue v3.00/2016 | Subject to technical modifications. © Menerga GmbH | www.menerga.com

Lipit Turo		E9 10 01	E9 2E 01	E9 22 01	E9 26 01
Ontroup flow rate	m ³ /h	11 200	15 800	19,900	23 100
		11,600	13,800	19,900	25,100
	KW	/2.3	92.3	118.9	132.4
	EER	11	12.6	12.6	14.2
Coefficient of power efficiency according to EN 13053:2012	%	68	68	70	70
Heat recovery rate according to EN 308	%	/1	70	/3	/3
Total electrical power rating ³	kW	15.14	18.54	25.50	27.80
Max. current consumption ³	A	41.9	56.3	69.0	71.8
Operating voltage			3 / N / PE 4	100 V 50 Hz	
Ext. pressure loss		1	1	1	
Supply and fresh air channel	Pa	400	400	500	500
Return and exhaust air channel	Pa	400	400	500	500
Sound power level ⁴					
Supply air vent	dB(A)	77	73	80	80
RA connection	dB(A)	74	68	74	77
Outside air vent	dB(A)	64	59	65	67
EA connection	dB(A)	76	68	75	77
Acoustic pressure at a distance of 1 m from the device ⁴	dB(A)	66	59	66	68
Fan units					
Rated fan input for supply air ⁵	kW	4.48	5.98	8.36	9.66
Rated fan input for return air ⁵	kW	4.06	5.26	7.74	8.84
SFP category supply air return air		2 2	2 3	2 3	2 3
Nominal rating supply air return air	kW	6.0 6.0	10.0 10.0	12.0 10.0	12.0 12.0
Inner specific fan power (SFPint) 6	Ws/m	681	572	666	660
Evaporative cooling ^{1,7}					
Cooling capacity of adiabatic evaporative cooling system	kW	40.7	53.9	70.8	82.4
Rated pump input for evaporative cooling	kW	1.1	1.1	1.5	1.5
Compressor refrigeration system					
Filling volume for refrigerant type R410A	ka	12.0	18.0	210	22.0
Rated compressor input	kW	55	62	79	7.8
Mechanical cooling capacity ^{1,8}	kW	316	38.4	48.1	50.0
Efficiency classes according to EN 13053-2012		5 1.0	50.1	10.1	50.0
Heat recovery class		H2	H2	H2	H2
Power consumption of fans SALRA		D1 D1	D1 D1	D1 D1	D1 D1
Air velocity class		 	 	 /2	11 11 \/2
Filtration according to DIN EN 770		٧∠	٧∠	٧∠	٧∠
Filliation according to Diver 779			E7		
Poturo Air				M5	
			IV	15	
		21.0	42.2	46.1	F2 2
Heating capacity SA=22° C ²	KVV	31.0	43.Z	46.1	55.5
Heating capacity SA=30° C ⁹	KVV	62.7	85.5	99.6	115.4
	KVV	31.9	41.1	52.1	60.6
Water flow rate and pressure losses at heating capacity SA=22° C	3 // • · · -			:	
LPHW	m ⁻ /h kPa	2.13 4.8	3.86 3.9	4.77 3.5	4.77 3.9
LPHW (pump warm water) valve	m~/h kPa	1.58 6.3	2.30 5.3	2.61 4.4	2.92 5.4
Connections			1		
LPHW connection	DN	40	50	50	65
LPHW control valve connection	DN	20	25	25	25
Clean water connection ¹¹	DN	20	20	20	20
Condensate / slurry drain	DN	40	40	40	40
Floor drains	DN	40	40	40	40

Specifications of technical data relate to the optimum flow rate and return air condition 22° C / 40% r.h., outside air condition -12° C / 90% r.h. and standard density (1.204 kg/m³), unless otherwise specified.

1

for RA 26° C; 55 % r.h. and OA 32° C; 40% r.h. incl. evaporative cooling capacity taking into account power consumption for adiabatic pump(s) dependent on configuration of measurement and 2

3 control system/unit

6

water quality of make-up water corresponds to VDI 3803 table B3 with a bacteria count < 100 CFU/ml,

7

8

water hardness range "middle". at supply air \approx 17° C FL = 70° C At OA=-15° C, SA=18° C, 66% of optimum flow rate and active defrost function 9

10 $\,$ 2 bar system pressure required at 25 l/min flow rate

Please seek approval of technical data and specifications prior to start of the planning process. With every single selection we do to your individual requirements our certified selection software automatically checks the Ecodesign compliance level 1 and 2.

Comfort air conditioning unit with highly efficient regenerative heat storage packages

Resolair 62 and 66

AIR VOLUME FLOW: 1,200 - 4,300 m³/h

At a glance:

Resolair

 For heat and cooling recovery
 Over 90% temperature efficiency
 Energy efficiency class H1

.....

Corrosion-free heat storage packages made from polypropylene for more compact and lighter units

according to EN 13053:2012

Energy-saving EC fans

.....

 Integrated compressor refrigeration system (66 series)

.....

.....

- Compact design
- Humidity recovery up to 70%
- Integrated control and regulation system, compatible with all conventional building management systems
- Fulfils the requirements of VDI 6022

Units of the Resolair 62 and 66 series achieve a very high heat recovery efficiency up to 90% and at the same time a moisture recovery up to 70% thanks to the regenerative heat recovery system. The result is a comfortable climate at lowest energy costs. The integrated compression refrigeration system of Series 66 increases the cooling capacity of the entire system at high temperatures.

ECODESIGN

2016 + 2018

Further performance parameters and options:

- Filtering the air in any operating mode
- Cycle time adjustment for by-passing
- the heat recovery up to free cooling
 Individually controllable performance parameters
- Complete unit, ready to connect, contains all structural elements for comfort air conditioning, including all control and regulation fittings
- Intensive quality inspection with factory test run

Options

- Recirculation air heating damper
- Pumped hot water heating coil
- Pumped chilled water cooling coil (62 series)
- Reversible compressor refrigeration system (66 series)
- Outdoor installation
- Thermal bridge factor TB1
- Remote maintenance
- And many more

Functional description

The unit contains two heat storgae packets with highly sensitive accumulator mass, through which the outside and return air are transported alternately. The accumulator mass is able to capture heat from a warm air flow very rapidly and transferring this just as rapidly to the cold air flow.

There is a damper system installed upstream and downstream of the packets. The damper system at RA/SA side is actuated by electric motors, while the damper system at OA/EA side operates dynamically.

The fans in the return air and supply air sections simultaneously supply cold outside air through one packet and warm return air through the other. One packet stores the heat from the return air, which the other packet simultaneously discharges stored heat into the outside air. The temperature efficiency of the regenerative energy exchanger is over 90%. Thus the unit obtains virtually all the heat energy back from the return air. This means that an additional supply air heating coil is not needed and the internal heat load covers the transmission heat loss. Despite the very high heat recovery efficiency of the Resolair series, the regenerative heat recovery system used requires no defrost mode. The heating capacity normally needed is not required in this case.

In wintertime conditions, the humidity recovery of the regenerative heat recovery system is up to 70%, which in most applications makes an additional humidification system obsolete in winter.

Where outside air temperatures are rising, variable alteration of the switching cycles allows heat recovery to be reduced all the way down to free cooling. If the outside temperatures exceed the indoor temperature, the unit switches back into the basic cycle and then operates in "cooling recovery mode" with the same high degree of efficiency as for heat recovery.

For the removal of higher internal heat loads at high outside air temperatures the integrated compressior refrigeration

Resolair Type 62

System dimensions and weights

Important! Where a system is operated in parallel, the supply air and return air ducts of the two units have to be brought together.

Where units are run in parallel, each unit has a controls cabinet. Mirror-image design possible.

Unit feet 100 mm Optional: adjustable feet from 100 to 120 mm

Unit Type	Ľ	W²	H ³	W1	H1	H2	H3	H4	H5	Weight ¹
62 12 01	2,010	570	1,210*	420	1,050	325	420	325	420	410
62 18 01	2,170	730	1,530*	580	1,370	485	580	485	580	550
62 26 01	2,330	730	1,850	580	1,690	485	900	580	580	600
62 36 01	2,330	1,050	1,850	900	1,690	485	900	580	580	810

Controls cabinet

Unit Type	$H \ge W \ge D^1$	Position at unit
62 12 01	480 x 640 x 210	on top of unit
62 18 01	480 x 640 x 210	on top of unit
62 26 01	900 x 480 x 210	OA/EA side
62 36 01	900 x 480 x 210	OA/EA side

For service work, a clearance corresponding to dimension W is required on the operating side of the unit. If dimension W is smaller than one metre, please leave a clearance of one metre. For service work above the unit, please allow 50 mm working height clearance above the cable duct.

Please comply with the dimensions for body size, air duct connections and electrical switch cabinet.

Partitioning of unit for smaller apertures possible (at extra cost).

All lengths are given in mm, weights in kg, weight incl. controls cabinet.

- May change depending on choosen option Door fitting assembly increase unit width by 1 1

- 25 mm each operating side Height incl. 100 mm unit feet and 60 mm cable duct Controls cabinet arranged on top of unit, please add con-trols cabinet height (480 mm). 2

Unit Type		62 12 01	62 18 01	62 26 01	62 36 01		
Optimum flow rate	m³/h	1,200	1,800	2,600	3,600		
Max, volume flow rate ¹	m³/h	1,400	2,100	3,100	4,300		
"Cooling recovery system" ²	kW	2.0	3.0	4.3	6.1		
Coefficient of power efficiency according to EN 13053:2012	%	90	90	90	90		
Heat recovery rate according to EN 308	%	91	91	91	91		
Recovery of humidity	%		up te	o 70			
Total electrical power rating ³	kW	0.75	1.09	1.56	1.96		
Max. current consumption ³	А	6.6	13.8	8.0	6.6		
Operating voltage		1 / N / PE 2	230 V 50 Hz	3 / N / PE 4	00 V 50 Hz		
Ext, pressure loss							
Supply and fresh air channel	Pa	300	300	300	300		
Return and exhaust air channel	Pa	300	300	300	300		
Sound power level ⁴							
Supply air vent	dB(A)	66	65	67	67		
RA connection	dB(A)	63	60	61	60		
Outside air vent	dB(A)	56	53	54	53		
EA connection	dB(A)	58	58	60	60		
Acoustic pressure at a distance of 1 m from the device ⁴	dB(A)	47	46	48	48		
Fan units	i and the second se		ĺ				
Rated fan input for supply air ⁵	kW	0.37	0.54	0.77	0.97		
Rated fan input for return air ⁵	kW	0.38	0.55	0.79	0.99		
SFP category supply air return air		2 2	2 2	2 2	2 2		
Nominal rating supply air return air	kW	0.8 0.8	1.4 1.4	2.5 2.5	2.0 2.0		
Inner specific fan power (SFP _{int}) ⁶	Ws/m ³	851	747	886	689		
Efficiency classes according to EN 13053:2012							
Heat recovery class		H1	H1	H1	H1		
Power consumption of fans SA RA		P1 P1	P1 P1	P1 P1	P1 P1		
Air velocity class		V1	V1	V1	V1		
Filtration according to DIN EN 779							
Outside air			F	7			
Return Air			F	7			
LPHW (optional) ^{7,8}							
Heating capacity SA=22° C	kW	0.9	1.4	2.0	3.0		
Heating capacity SA=30° C	kW	4.1	6.3	9.1	12.7		
Additional power consumption for supply air	W	20	20	50	50		
Water flow rate and pressure losses at SA = 22° C							
LPHW	m³/h kPa	0.25 5.5	0.50 5.3	0.50 5.4	0.50 7.3		
LPHW (pump warm water) valve	m³/h kPa	0.10 6.8	0.16 6.2	0.24 5.7	0.29 8.6		
Connections							
LPHW connection	DN	32	32	32	32		
LPHW control valve connection	DN	10	10	10	10		
LPCW (optional) ^{7,9}							
Cooling capacity SA \approx 20° C 2	kW	4.6	6.7	9.1	16.4		
Additional power consumption for supply air ⁵	W	70	40	110	120		
Water flow rate and pressure losses							
LPCW	m³/h kPa	0.65 4.7	0.95 1.6	1.31 2.8	2.35 9.6		
LPCW valve	m³/h kPa	0.65 6.8	0.95 14.6	1.31 6.8	2.35 13.9		
Connections							
LPCW connection	DN	32	32	32	32		
LPCW control valve-connection	DN	15	20	25	25		

Specifications of technical data relate to the optimum flow rate and return air condition 22° C / 40% r.h., outside air condition -12° C / 90% r.h. and standard density (1.204 kg/m³), unless otherwise specified.

May require alteration of the technical equipment at OA = 26° C / 55% r.h., RA = 32° C / 40% r.h. and standard density

3 Depends on configuration of measurement and control

system/unit at 250 Hz mid-band frequency 4

5

with average filter contamination According EU guideline No. 1253/2014 6

[Ecodesign guideline]

Supplementary equipment, device length extend at least 410 mm. Note higher power consumption of SA fan units 7

8 FL = 70° C 9 FL = 6° C

Please seek approval of technical data and specifications prior to start of the planning process. With every single selection we do to your individual requirements our certified selection software automatically checks the Ecodesign compliance level 1 and 2.

1

Resolair Type 66

System dimensions and weights

Important! Where a system is operated in parallel, the supply air and return air ducts of the two units have to be brought together.

Where units are run in parallel, each unit has a controls cabinet.

Unit feet 100 mm Optional: adjustable feet from 100 to 120 mm

Mirror-image design possible

Unit Type	Ľ	W ²	H³	L1	L2	L3	W1	H1	H2	H3	H4	H5	Weight ¹
66 18 01	3,310	730	1,530	410	2,170	730	580	1,370	485	580	485	580	790
66 26 01	3,470	730	1,850	410	2,330	730	580	1,690	485	900	580	580	850
66 36 01	3,470	1,050	1,850	410	2,330	730	900	1,690	485	900	580	580	1,100

Controls cabinet

Resolair

Unit Type	$H \ge W \ge D^1$	Position
66 18 01	1,120 x 640 x 210	Wall mouniting
66 26 01	1,120 x 640 x 210	Wall mouniting
66 36 01	1,120 x 640 x 210	Wall mouniting

For service work, a clearance corresponding to dimension W is required on the operating side of the unit. If dimension W is smaller than one metre, please leave a clearance of one metre. For service work above the unit, please allow 50 mm working height discreases above the sched dust. height clearance above the cable duct.

Please comply with the dimensions for body size, air duct connections and electrical switch cabinet.

Partitioning of unit for smaller apertures possible (at extra cost).

All lengths are given in mm, weights in kg, weight incl. controls cabinet.

- May change depending on choosen option
 Door fitting assembly increase unit width by 25 mm each operating side. Refrigerant pipe duct on backside of the unit increases unit width by 80 mm.
 Height incl. 100 mm unit feet and 60 mm cable duct

Unit Type		66 18 01	66 26 01	66 36 01
Optimum flow rate	m³/h	1,800	2,600	3,600
Max. volume flow rate ¹	m³/h	2,100	3,100	4,300
"Cooling recovery system" ²	kW	3.0	4.3	6.1
Coefficient of power efficiency according to EN 13053:2012	%	90	90	90
Heat recovery rate according to EN 308	%	91	91	91
Recovery of humidity	%		up to 70	
Total electrical power rating ³	kW	3.8	5.9	7.6
Max. current consumption ³	А	20.8	18.0	21.6
Operating voltage			3 / N / PE 400 V 50 Hz	
Ext. pressure loss				
Supply and fresh air channel	Pa	300	300	300
Return and exhaust air channel	Pa	300	300	300
Sound power level ⁴				
Supply air vent	dB(A)	64	66	65
RA connection	dB(A)	61	62	61
Outside air vent	dB(A)	55	57	55
EA connection	dB(A)	59	60	60
Acoustic pressure at distance of 1 m from device ⁴	dB(A)	47	50	49
Fan units				
Rated fan input for supply air ⁵	kW	0.59	0.88	1.08
Rated fan input for return air ⁵	kW	0.57	0.82	1.02
SFP category supply air return air		2 2	3 2	2 2
Nominal rating supply air return air	kW	1.4 1.4	2.5 2.5	2.0 2.0
Inner specific fan power (SFP _{int})	Ws/m ³	747	884	690
Compressor refrigeration system ^{2,7}				
Filling volume for refrigerant type R410A	kg	3.0	3.0	4.0
Rated compressor input	kW	2.6	4.2	5.5
Mechanical cooling capacity	kW	8.6	12.7	17.7
Energy Efficiency Ratio ⁸	EER	4.5	4.0	4.3
Efficiency classes according to EN 13053:2012				
Heat recovery class		H1	H1	H1
Power consumption of fans SA RA		P1 P1	P1 P1	P1 P1
Air velocity class		V1	V1	V1
Filtration according to DIN EN 779				
Outside air			F7	
Return Air			F7	
LPHW (optional) ^{9,10}				
Heating capacity SA=22° C	kW	1.3	2.0	2.9
Heating capacity SA=30° C	kW	6.2	9.0	12.7
Additional power consumption supply air	W	20	50	50
Water flow rate and pressure losses at SA = 22° C				
LPHW	m³/h kPa	0.50 5.4	0.50 5.3	0.50 7.2
LPHW (pump warm water) valve	m³/h kPa	0.16 6.1	0.24 5.6	0.29 8.6
Connections				
LPHW connection	DN	32	32	32
LPHW control valve connection	DN	10	10	10

Specifications of technical data relate to the optimum flow rate and return air condition 22° C / 40% r.h., outside air condition -12° C / 90% r.h. and standard density (1.204 kg/m³), unless otherwise specified.

4 5

6

7

8 9

8 FL = 70° C

at 250 Hz mid-band frequency with average filter contamination According EU guideline No. 1253/2014 [Ecodesign guideline] SA ≈ 17° C Incl. "coolimg recovery" Supplementary equipment, device length extend at least 320 mm. Note higher power consumption of SA fan units FL = 70° C

Please seek approval of technical data and specifications prior to start of the planning process. With every single selection we do to your individual requirements our certified selection software automatically checks the Ecodesign compliance level 4 and 2 level 1 and 2.

May require alteration of the technical equipment at OA = 26° C / 55% r.h., RA = 32° C / 40% r.h. and standard density 1 2

Depends on configuration of measurement and control system/unit 3

63

Comfort air conditioning unit with highly efficient regenerative heat storage packages

Automatically selects the most economical operating mode!

Resolair 64 and 68

AIR VOLUME FLOW: 3,900 - 23,100 m³/h

At a glance:

- For heat and cooling recovery
 Over 90% temperature efficiency
 Energy efficiency class H1 according to EN 13053:2012
- Corrosion-free heat storage packages made from polypropylene for more compact and lighter units
- Energy-saving EC fans
- Integrated compressor refrigeration system (68 series)

.....

.....

.....

- Two-stage supply air filtration
- Humidity recovery up to 70%
- Fulfils the requirements of VDI 6022

Units of the Resolair 64 and 68 series combine medium and large air volumes with the advantages of regenerative heat recovery: up to over 90% heat recovery and up to 70% humidity recovery allow a comfortable climate

CERTIFIED PERFORMANCE

> Eurovent seal refers to range Menerga Air, more information on page 6. Check ongoing validity of certificate: www.eurovent-certification.com or www.certiflash.com Passive House seal refers to series 64

ECODESIGN

2016 + 2018

with minimal energy costs. The devices are built in a modular construction and offer a very high flexibility with regards to design and optional features.

R

Further performance parameters and options:

- Filtering the air in any operating mode
- Cycle time adjustment for by-passing the heat recovery up to free cooling
- Integrated bypass function
- Thermal bridge factor TB1
- Individually controllable performance parameters
- Complete unit, ready to connect, contains all structural elements for comfort air conditioning, including all control and regulation fittings
- Intensive quality inspection with factory test run

Options

RT 👿

- Recirculation air heating damper
- Pumped hot water heating coil
- Pumped chilled water cooling coil (64 series)
- Reversible compressor refrigeration system (68 series)
- Supply air / return air airflow path exchanged (64 series)
- Attenuator
- Outdoor installation
- Hot water extraction, to use waste heat for heating purposes (68 series)
- Remote maintenance
- And many more

Functional description

The unit contains two heat packets with highly sensitive accumulator mass, through which the outside and return air are transported alternately. The accumulator mass is able to capture heat from a warm air flow very rapidly and transferring this just as rapidly to the cold air flow.

A damper system is installed upstream and downstream of the packets. The damper system at RA/SA side is actuated by electric motors, while the damper system at OA/EA side operates dynamically (at series 68 also mechanical). The fans in the return air and supply air sections simultaneously supply cold outside air through one packet and warm return air through the other. One packet stores the heat from the return air, which the other packet simultaneously discharges stored heat into the outside air. The temperature efficiency of the regenerative energy exchanger is over 90%. The unit thus obtains virtually all the heat energy back from the return air. This means that an additional supply air heating coil is not required and the internal heat load covers the transmission heat loss. Despite the very high heat recovery efficiency of the Resolair series, the regenerative heat recovery system used requires no defrost mode. The heating capacity normally needed is not required in this case.

In wintertime conditions, the humidity recovery of the regenerative heat recovery system is up to 70%, which in most applications makes an additional humidification system unnecessary in wintertime.

Where outside air temperatures are rising, variable alteration of the switching cycles allows heat recovery to be reduced all the way down to free cooling. If the outside temperatures exceed the indoor temperature, the unit switched back into the basic cycle and then operates in "cooling recovery mode" with the same high degree of efficiency as for heat recovery.

For the removal of higher internal heat loads at high outside air temperatures the integrated compression refrigeration system is switched on (68 series).

Resolair Type 64

System dimensions and weights

Important! Where a system is operated in parallel, the supply air and return air ducts of the two units have to be brought together.

Mirror-image design possible. Supply air / return air airflow path exchanged optionally possible

*1 starting at unit type 64 21 01 horizontal cube partition

Where units are run in parallel, each unit has a controls cabinet.

Unit type	Ľ	W ²	H³	L11	L2 ¹	L31	W1	H1	H2	Weight ¹
64 05 01	4,330	1,110	1,700	1,400	2,330	600	900	1,520	580	1,300
64 07 01	4,650	1,110	2,340	1,400	2,650	600	900	2,160	900	1,650
64 10 01	4,810	1,430	2,340	1,560	2,650	600	1,220	2,160	900	2,050
64 12 01	4,810	1,750	2,340	1,560	2,650	600	1,540	2,160	900	2,350
64 15 01	4,970	2,070	2,340	1,560	2,810	600	1,860	2,160	900	2,600
64 21 01	5,610	2,070	2,980	1,560	3,450	600	1,860	2,800	1,220	3,550
64 26 01	5,930	2,070	3,620	1,560	3,770	600	1,860	3,440	1,540	4,000
64 32 01	5,930	2,390	3,620	1,560	3,770	600	2,180	3,440	1,540	4,400

For service work, a clearance corresponding to dimension W is required on the operating side of the unit. If dimension W is smaller than one metre, please leave a clearance of one metre. For service work above the unit, please allow 50 mm working height clearance above the cable duct.

Please comply with the dimensions for body size, air duct connections and electrical switch cabinet.

All lengths are given in mm, weights in kg, weight incl. controls cabinet

- May change depending on choosen option Door fitting assembly increase unit width by 65 mm each operating side incl. 120 mm base frame,
- 2
- 3
- *
- incl. 60 mm cable duct Further partitioning for smaller apertures possible (at extra cost).

Largest transport unit*

Unit type	L1	L ¹ W ²		Weight ¹
64 05 01	2,330	1,110	1,700	700
64 07 01	2,650	1,110	2,340	960
64 10 01	2,650	1,430	2,340	1,220
64 12 01	2,650	1,750	2,340	1,370
64 15 01	2,810	2,070	2,340	1,550
64 21 01	3,450	2,070	2,980	2,200
64 26 01	3,770	2,070	3,620	2,600
64 32 01	3,770	2,390	3,620	2,800

Controls cabinet

Unit Type	$H \ge W \ge D^1$	Position at unit
64 05 01	1,120 x 640 x 210	SA/RA side
64 07 01	1,120 x 640 x 210	SA/RA side
64 10 01	1,120 x 640 x 210	SA/RA side
64 12 01	1,120 x 640 x 210	SA/RA side
64 15 01	1,120 x 640 x 210	SA/RA side
64 21 01	1,120 x 640 x 210	SA/RA side
64 26 01	1,120 x 640 x 210	SA/RA side
64 32 01	1,280 x 640 x 210	SA/RA side

Unit Type		64 05 01	64 07 01	64 10 01	64 12 01	64 15 01	64 21 01	64 26 01	64 32 01	64 xx xx
Optimum flow rate	m³/h	3,900	6,000	7,900	9,800	11,800	15,800	19,900	23,100	up to
Max. volume flow rate ¹	m³/h	5,000	7,500	10,000	12,500	15,000	21,000	26,000	32,000	51,000
"Cooling recovery system" ²	kW	6.6	10.2	13.5	16.7	19.9	26.7	33.4	38.8	
Coefficient of power efficiency according to EN 13053:2012	%	90	90	90	90	90	90	90	90	
Heat recovery rate according to EN 308	%	91	91	91	91	91	91	91	91	
Recovery of humidity	%				bis z	u 70				
Total electrical power rating ³	kW	2.25	3.42	4.27	5.36	7.58	10.12	14.34	16.44	
Max. current consumption ³	А	8.0	9.6	16.0	16.0	17.4	32.0	32.0	37.6	
				3	/ N / PE 4	100 V 50 F	 Iz			
Ext. pressure loss										
Supply and fresh air channel	Pa	300	300	300	300	400	400	500	500	
Return and exhaust air channel	Pa	300	300	300	300	400	400	500	500	
Supply air vent	dB(A)	66	72	68	72	81	73	80	83	
RA connection	$dB(\Lambda)$	65	68	63	67	74	67	72	76	
Outside air vent	dB(A)	57	67	57	61	67	61	67	70	
EA connection	$dB(\Lambda)$	67	67	67	67	76	67	74	70	
Acoustic pressure at a distance of 1 m from the device 4	dB(A)	51	56	52	57	66	57	64	68	
	00(/ ()	51	50	52	51	00	51	01	00	
Pated fan input for supply air 5		1 7 7	1 87	235	202	4.06	5 50	7 7 7	8 76	
Pated fan input for return air ⁵		1.22	1.07	2.55	2.75 7.12	4.00	147	6.67	7 4 0	
SED cotogory supply oid roturn oir	KVV	1.05	1.55	1.72	2.45 1 1	3.3Z	4.02	0.02	7.00	
Nemical sating supply all preturn all	L2\A/	1 2					1001100	2 3 100 100	2 J 12 0 12 0	
	KVV	2.3 2.3 E21	2.9 2.9	5.0 5.0	5.0 5.0	0.0 S.U	10.0 10.0 E 1 0	10.01 10.0 E 0 0	12.0 12.0	
Efficiency closes according to EN 12052 2012	W5/11	150	504	474	201	208	210	309	477	
Efficiency classes according to EN 13053:2012		111	1.11	111	111	111	111	111	111	
Power consumption of rans SA RA										
		VI	٧Z	٧Z	٧Z	٧Z	٧Z	٧Z	٧Z	
Filtration according to DIN EN 779					F7					
Supply air j Outside air					F7	M5				
					IV	15				
LPHW (optional)	1.1.1	2.2	10			0.7	12.0	457	10.2	
Heating capacity SA=22° C	KW	3.2	4.9	6.6	8.3	9.7	12.8	15.7	18.3	
Heating capacity SA=30° C	KW	13.8	21.9	28.2	34.9	41.7	55.7	69.6	81.2	
Additional power consumption for supply air	VV	50	90	100	110	120	220	240	280	
Water flow rate and pressure losses	3/1.110	0.001.4.4	120111	045107	244144	244150	2 00 1 4 0	4 70 10 4	475140	
LPHW	m ⁻ /h kPa	0.88 4.4	1.38 4.4	2.15 3.7	2.16 4.4	2.14 5.0	3.88 4.0	4./3 3.6	4.75 4.0	
LPHW (pump warm water) valve	m°/n kPa	0.36 5.0	0.55 4.8	0.73 8.6	0.87 4.7	1.00 6.2	1.38 4.8	1.72 4.6	1.96 3.9	
Connections							= 0	= 0		
LPHW connection	DN	32	32	40	40	40	50	50	65	
LPHW control valve connection	DN	15	15	15	15	20	25	25	25	
LPCW (optional)					1					
Cooling capacity SA \approx 18° C ²⁸	kW	17.3	26.4	34.3	42.5	55.6	75.7	96.3	117.1	
Additional power consumption for supply air	W	190	260	500	400	340	520	420	640	
Water flow rate and pressure losses at SA = 22° C	2									
LPCW	m³/h kPa	2.47 10.5	3.77 7.1	4.91 5.6	6.08 4.0	7.95 7.2	10.83 7.1	13.77 7.2	16.75 11.0	
LPCW valve	m²/h kPa	2.47 15.4	3.77 9.1	4.91 6.0	6.08 4.0	7.95 10.1	10.83 7.3	13.77 11.9	16.75 17.5	
Connections										
LPCW connection	DN	40	50	50	65	80	80	80	100	
LPCW control valve-connection	DN	20	25	32	40	40	50	50	50	

Specifications of technical data relate to the optimum flow rate and return air condition 22° C / 40% r.h., outside air condition -12° C / 90% r.h. and standard density (1.204 kg/m³), unless otherwise specified.

May require alteration of the technical equipment at OA = 26° C / 55% r.h., RA = 32° C / 40% r.h. and

3 Depends on configuration of measurement and control

system/unit at 250 Hz mid-band frequency

4

a laboration requertly
b with average filter contamination
c According EU guideline No. 1253/2014 [Ecodesign guideline]
c FL = 70° C
FL = 6° C

Please seek approval of technical data and specifications prior to start of the planning process. With every single selection we do to your individual requirements our certified selection software automatically checks the Ecodesign compliance level 1 and 2.

1 2

Resolair Type 68

System dimensions and weights

Important! Where a system is operated in parallel, the supply air and return air ducts of the two units have to be brought together.

Where units are run in parallel, each unit has a controls cabinet.

Mirror-image design possible.

*1 starting at unit type 68 21 01 horizontal cube partition

Unit Type	Ľ	W ²	H³	L11	L2 ¹	L31	W1	H1	H2	Weight ¹
68 05 01	5,380	1,110	1,700	2,290	2,330	760	900	1,520	580	1,750
68 07 01	5,700	1,110	2,340	2,290	2,650	760	900	2,160	900	2,150
68 10 01	5,860	1,400	2,340	2,450	2,650	760	1,220	2,160	900	2,700
68 12 01	6,020	1,750	2,340	2,610	2,650	760	1,540	2,160	900	3,050
68 15 01	6,180	2,070	2,340	2,610	2,810	760	1,860	2,160	900	3,500
68 21 01	6,980	2,070	2,980	2,610	3,450	920	1,860	2,800	1,220	4,450
68 26 01	7,300	2,070	3,620	2,610	3,770	920	1,860	3,440	1,540	5,100
68 32 01	7,300	2,390	3,620	2,610	3,770	920	2,180	3,440	1,540	5,500

For service work, a clearance corresponding to dimension W is required on the operating side of the unit. If dimension W is smaller than one metre, please leave a clearance of one metre. For service work above the unit, please allow 50 mm working height clearance above the cable duct.

Please comply with the dimensions for body size, air duct connections and electrical switch cabinet.

All lengths are given in mm, weight incl. controls cabinet.

- May change depending on choosen option Door fitting assembly increase unit width by 65 mm each operating side incl. cable duct, cold air duct 2
- 3

and base frame Further partitioning for smaller apertures * possible (at extra cost).

Largest transport unit*

Unit Type	L1	W²	H³	Weight ¹
68 05 01	2,330	1,110	1,700	720
68 07 01	2,650	1,110	2,340	980
68 10 01	2,650	1,400	2,340	1,250
68 12 01	2,650	1,750	2,340	1,400
68 15 01	2,810	2,070	2,340	1,570
68 21 01	3,450	2,070	2,980	2,220
68 26 01	3,770	2,070	3,620	2,620
68 32 01	3,770	2,390	3,620	2,820

Controls cabinet

Unit Type	$H \ge W \ge D^1$	Position at unit
68 05 01	1,120 x 640 x 210	SA/RA side
68 07 01	1,120 x 640 x 210	SA/RA side
68 10 01	1,120 x 640 x 210	SA/RA side
68 12 01	1,120 x 640 x 210	SA/RA side
68 15 01	1,280 x 640 x 210	SA/RA side
68 21 01	1,280 x 640 x 210	SA/RA side
68 26 01	1,600 x 640 x 250	SA/RA side
68 32 01	1,600 x 640 x 250	SA/RA side

Unit Type		68 05 01	68 07 01	68 10 01	68 12 01	68 15 01	68 21 01	68 26 01	68 32 01	68 xx xx
Optimum flow rate	m³/h	3,900	6,000	7,900	9,800	11,800	15,800	19,900	23,100	up to
Max. volume flow rate ¹	m³/h	5,000	7,500	10,000	12,500	15,000	21,000	26,000	32,000	51,000
"Cooling recovery system" ²	kW	6.6	10.1	13.5	16.7	19.9	26.6	33.3	38.7	
Coefficient of power efficiency according to EN 13053:2012	%	90	90	90	90	90	90	90	90	1
Heat recovery rate according to EN 308	%	91	91	91	91	91	91	91	91]
Recovery of humidity	%				up t	o 70				1
Total electrical power rating ³	kW	8.12	11.35	16.20	16.75	23.10	27.78	36.88	43.06]
Max. current consumption ³	А	23.0	30.6	47.0	47.0	60.8	76.0	92.8	105.6	1
Operating voltage				3	8 / N / PE 4	100 V 50 H	z]
Ext. pressure loss										
Supply and fresh air channel	Pa	300	300	300	300	400	400	500	500]
Return and exhaust air channel	Pa	300	300	300	300	400	400	500	500]
Sound power level ⁴										
Supply air vent	dB(A)	64	70	66	72	78	72	79	79]
RA connection	dB(A)	65	68	63	68	73	68	73	77	
Outside air vent	dB(A)	58	67	58	63	67	63	69	71	
EA connection	dB(A)	63	64	63	67	76	67	76	81]
Acoustic pressure at distance of 1 m from device ⁴	dB(A)	52	57	53	59	65	59	66	69]
Fan units										
Rated fan input for supply air ⁵	kW	1.34	2.11	2.57	3.19	4.33	5.92	8.06	9.26]
Rated fan input for return air 5	kW	1.08	1.64	2.03	2.56	3.67	4.86	6.92	8.00]
SFP category supply air return air		1 2	1 2	1 2	1 2	2 2	2 2	2 3	1 2	
Nominal rating supply air return air	kW	2.5 2.5	2.9 2.9	5.0 5.0	5.0 5.0	6.0 6.0	10.0 10.0	12.0 10.0	12.0 12.0	
Inner specific fan power (SFP _{int}) ⁶	Ws/m ³	540	508	475	505	518	517	505	491]
Compressor refrigeration system										
Filling volume for refrigerant type R410A	kg	4.0	6.0	10.0	11.0	14.0	20.0	22.0	26.0]
Rated compressor input ²	kW	5.7	7.6	11.6	11.0	15.1	17.0	21.9	25.8]
Mechanical cooling capacity ⁷	kW	17.4	26.8	37.9	41.4	53.0	66.8	84.2	98.5]
Energy Efficiency Ratio ⁸	EER	4.2	4.9	4.4	5.3	4.8	5.5	5.4	5.3]
Efficiency classes according to EN 13053:2012]
Heat recovery class		H1	H1	H1	H1	H1	H1	H1	H1	
Power consumption of fans SA RA		P1 P1	P1 P1	P1 P1	P1 P1	P1 P1	P1 P1	P1 P1	P1 P1	
Air velocity class		V1	V2	V2	V2	V2	V2	V2	V2	
Filtration according to DIN EN 779]
Supply air Outside air					F7	M5				
Return Air					N	15				
LPHW (optional) ⁹]
Heating capacity SA=22° C	kW	3.1	4.8	6.6	8.1	9.5	12.6	15.5	18.1	
Heating capacity SA=30° C	kW	13.7	21.2	28.1	34.8	41.5	55.4	69.5	81.0	
Additional power consumption for supply air	W	60	30	100	120	120	220	260	280	
Water flow rate and pressure losses at SA = 22° C										
LPHW	m³/h kPa	0.88 4.4	1.39 4.5	2.14 3.7	2.1 4.4	2.14 5.0	3.86 4.0	4.72 3.6	4.73 4.0	
LPHW (pump warm water) valve	m³/h kPa	0.36 5.0	0.55 4.8	0.73 8.5	0.87 4.7	1.00 6.2	1.38 4.8	1.72 4.6	1.96 3.8	
Connections										
LPHW connection	DN	32	32	40	40	40	50	50	65	
IPHW control valve connection	DN	15	15	15	15	15	20	20	20	

Specifications of technical data relate to the optimum flow rate and return air condition 22° C / 40% r.h., outside air condition -12° C / 90% r.h. and standard density (1.204 kg/m³), unless otherwise specified.

May require alteration of the technical equipment at OA = 26° C / 55% r.h., RA = 32° C / 40% r.h. and standard density

3 Depends on configuration of measurement and control Bepends on configuration of measurements system/unit
 at 250 Hz mid-band frequency
 with average filter contamination
 According EU guideline No. 1253/2014 [Ecodesign guideline]
 at SA ≈ 17° C
 incl. "cooling recovery"
 FL = 70° C

Please seek approval of technical data and specifications prior to start of the planning process. With every single selection we do to your individual requirements our certified selection software automatically checks the Ecodesign compliance level 1 and 2.

1 2

Ventilation technology for industry and trade

Automatically selects the most economical operating mode!

Resolair 65

AIR VOLUME FLOW: 10,000 - 40,000 m³/h

At a glance:

..... For heat and cooling recovery Over 90% temperature efficiency thanks to highly sensitive heat storage packages **Energy efficiency class H1** according to EN 13053:2012 Energy-saving EC fans Compact design Humidity recovery up to 70% •••••••••••••••••• Integrated control and regulation system, compatible with all conventional building management systems Ideal for retrofitting

Units in the 65 series use a regenerative heat recovery system to achieve the highest heat recovery efficiency with low internal pressure losses. The system was specially developed for industrial purposes, for outdoor installation. Its unique construction makes it ideal for retrofitting, as the effort for installation

is reduced to the supply of electrical power to the unit and the generally very short supply and return air ducts. The combination of first-class components with precise control and regulation systems guarantees economical operation at all times.

Further performance parameters and options:

- Filtering the air in any operating mode
- Cycle time adjustment for by-passing the heat recovery up to free cooling
- Individually controllable performance parameters
- Complete unit, ready to connect, contains all structural elements for air conditioning, including all control and regulation fittings
- Intensive quality inspection with factory test run
- Outdoor installation

Options

- -Pumped hot water heating coil
- -Pumped chilled water cooling coil
- _ Attenuator
- Remote maintenance
- And many more

menerga Technical Catalogue v3.00/2016 | Subject to technical modifications. © Menerga GmbH | www.menerga.com

Functional description

The unit contains two heat storage packets with highly sensitive accumulator mass, through which the outside and return air are transported alternately. The accumulator mass is capable of capturing heat from a warm air flow very rapidly and transferring this just as rapidly to the cold air flow.

In the middle of the unit there is a crossshaped damper system which allows alternating loading of the heat accumulators. The fans in the return air and supply air sections simultaneously supply cold outside air through one packet and warm return air through the other. One packet stores the heat from the return air, which the other packet simultaneously discharges stored heat into the outside air. The temperature efficiency of the Menerga regenerative energy exchanger is over 90%. Thus the unit obtains virtually all the heat energy back from the return air. This means that an additional supply air heating coil is not needed and the internal heat load covers the transmission heat loss.

Despite the very high heat recovery efficiency of the Resolair series, the regenerative heat recovery system used requires no defrost mode. The heating capacity normally needed is not required in this case.

In wintertime conditions, the humidity recovery of the regenerative heat recovery system is up to 70%, which in most applications makes an additional humidification of the supply air obsolete in wintertimes. Where OA temperatures are rising, variable alteration of the switching cycles allows heat recovery to be reduced all the way down to free cooling. If the outside temperatures exceed the indoor temperature, the unit switched back into the basic cycle and then operates in "cooling recovery mode" with the same high degree of efficiency as for heat recovery.

Resolair Type 65

System dimensions and weights

Unit type	Ľ	W²	Н	L11	L2 ¹	B1	B2	H1	H2	Weight ¹	Weight battery packets ¹	Weight fan cube ¹
65 07 91	4,110	3,700	1,170	1,530	1,050	1,050	900	1,050	900	2,300	700	480
65 17 91	5,390	4,340	1,490	1,850	1,690	1,690	1,540	1,370	1,220	4,550	1,600	660
65 26 91	6,030	4,660	1,810	2,010	2,010	2,010	1,860	1,690	1,540	6,100	2,000	1,000
65 36 91	6,030	4,980	2,130	1,850	2,330	2,330	2,180	2,010	1,860	8,050	4,700	1,200

Largest transportation unit (accumulator/ damper cube)

Unit Type	L1	w	Н	Weight ¹
65 07 91	1,050	3,700	1,170	1,540
65 17 91	1,690	4,340	1,490	3,160
65 26 91	2,010	4,660	1,810	3,900
65 36 91	2,330	4,980	2,130	5,560

Controls cabinet

Unit Type	$H \ge W \ge D^1$	Position
65 07 91	760 x 760 x 300	At unit
65 17 91	760 x 760 x 300	At unit
65 26 91	760 x 760 x 300	At unit
65 36 91	1,000 x 800 x 300	At unit

For service work, a clearance corresponding to dimension W is required on the operating side of the unit. If dimension W is smaller than one metre, please leave a clearance of one metre.

Please comply with the dimensions for body size, air duct connections and electrical switch cabinet.

All lengths are given in mm, weights in kg, weight incl. controls cabinet.

- 1 May change depending on choosen
- 2 Door fitting assembly increase unit width by 25 mm each operating side

72

Resolair
Unit Type		65 07 91	65 17 91	65 26 91	65 36 91
Max. flow rate	m³/h	10,000	20,000	30,000	40,000
"Cooling recovery system" 1	kW	16.3	33.0	50.3	66.1
Coefficient of power efficiency according to EN 13053:2012	%	88	89	89	89
Heat recovery rate according to EN 308	%	91	91	91	91
Recovery of humidity	%		up to	o 70	
Total electrical power rating ²	kW	7.65	13.22	18.57	25.36
Max. current consumption ²	А	16.8	33.6	43.8	67.2
Operating voltage			3 / N / PE 4	100 V 50 Hz	
Ext. pressure loss					
Supply air	Pa	200	150	190	160
Return Air	Pa	200	150	190	160
Sound power level ³					
Supply air vent	dB(A)	76	78	79	81
RA connection	dB(A)	77	80	77	83
Outside air vent	dB(A)	77	80	77	83
EA connection	dB(A)	79	81	82	84
Acoustic pressure at a distance of 1 m from the device ³	dB(A)	60	62	63	65
Fan units					
Rated fan input for supply air ⁴	kW	3.77	6.52	9.15	12.52
Rated fan input for return air 4	kW	3.88	6.70	9.42	12.84
SFP category supply air return air		3 3	2 3	2 2	2 2
Nominal rating supply air l return air	kW	5.5 5.5	11.0 11.0	14.1 14.1	22.0 22.0
Inner specific fan power (SFP _{int}) ⁵	Ws/m ³	1.260	1.174	1.050	1.085
Efficiency classes according to EN 13053:2012					
Heat recovery class		H1	H1	H1	H1
Power consumption of fans SA RA		P1 P1	P2 P2	P1 P1	P3 P3
Air velocity class		V6	V6	V6	V5
Filtration according to DIN EN 779					
Outside air			G	4	
Return Air			G	4	
LPHW (optional) 6.7					
Heating capacity SA=22° C	kW	7.3	15.1	24.3	30.5
Heating capacity SA=30° C	kW	34.3	69.6	105.7	139.5
Additional power consumption supply air	W	540	560	930	1,120
Water flow rate and pressure losses					
LPHW	m³/h kPa	2.74 4.8	5.50 3.9	7.33 3.9	8.88 4.1
LPHW (pump warm water) valve	m³/h kPa	0.75 9.1	1.62 4.1	2.41 3.7	3.11 6.2
Connections					
LPHW connection	DN	32	50	65	65
LPHW control valve connection	DN	15	20	25	32
LPCW (optional) 6.8					
Cooling capacity SA \approx 20° C	kW	30.7	74.3	110.0	157.6
Additional power consumption supply air	W	1,440	2,520	3,510	4,240
Water flow rate and pressure losses at SA = 22° C					
LPCW	m³/h kPa	4.40 4.9	10.63 5.9	15.73 4.8	18.77 2.7
LPCW valve	m³/h kPa	4.40 7.6	10.63 7.1	15.73 6.2	18.77 8.9
Connections					
LPCW connection	DN	40	65	80	80
LPCW control valve-connection	DN	25	50	50	50
	• • • • •			I	

Specifications of technical data relate to the optimum flow rate and return air condition 22° C / 40% r.h., outside air condition -12° C / 90% r.h. and standard density (1.204 kg/m³), unless otherwise specified. 3 at 250 Hz mid-band frequency

4 5 with average filter contamination According EU guideline No. 1253/2014

[Ecodesign guideline]

Supplimentary equipment, device length extends; may require alteration of technical equipment. Note higher power consumption of SA fan units
 FL = 70° C
 FL = 12° C

at OA = 26° C / 55% r.h., RA = 32° C / 40% r.h. and standard density Depends on configuration of measurement and control system/unit 2

Please seek approval of technical data and specifications prior to start of the planning process. With every single selection we do to your individual requirements our certified selection software automatically checks the Ecodesign compliance level 1 and 2.

1

Comfort air conditioning unit with double plate heat exchanger, adiabatic evaporative cooling system, and sorption-based dehumidification system

Sorpsolair 72 and 73

AIR VOLUME FLOW: 2,900 - 14,900 m³/h

At a glance:

- Sorption-based air conditioning – dehumidifying without electricity
- Adiabatic evaporative cooling – Cooling without electricity
- Thermal coefficient of efficiency COP_{th} from 1.5
- Brine regeneration through the use of solar energy, district heat or excess process heat at a lowtemperature level (from 65° C flow)
- Energy-saving EC fans
- Intelligent air bypass duct

Integrated defrosting function

Units in the Sorpsolair 72 and 73 series were developed especially to utilise regenerative energy. The innovative air conditioning concept combines sorptionbased dehumidification, adiabatic evaporative cooling and an efficient heat recovery system in a compact comfort air conditioning unit. The 72 series, without a brine accumulator, is suitable for directly utilising the waste heat e.g. from combined heat and power system (CHPS), while the brine accumulator integrated into the 73 series allows the storage of e.g. solar energy and hence increases the total efficiency of your installations. The combination of first-class components with precise control and regulation systems guarantees economical operation at all times, while ensuring the highest degree of comfort air conditioning. Sorpsolair systems are designed for all office and business buildings, as well as many other forms of application.

ECODESIGN

2016 + 2018

Further performance parameters and options:

- Integrated absorber and desorber
- Brine accumulator (73 series) for longlasting storage of e.g. solar heat allows discontinuous dehumidification operation
- Filtering the air in any operating mode
- Corrosion-free heat exchanger made from polypropylene
- Pumped hot water heating coil
- Individually controllable performance parameters
- Complete unit, ready to connect, contains all structural elements for comfort air conditioning, including all

control and regulation fittings

- Intensive quality inspection with factory test run

Options

- Pumped chilled water cooling coil
- Attenuator
- Outdoor installation
- Thermal bridge factor TB1
- Remote maintenance
- And many more

Wintertime conditions

In case of low outside temperatures the system operates completely in heat recovery mode. The standard heating coil (LPHW) compensates for ventilation and transmission heat losses of the building as required.

Indirect adiabatic evaporative cooling

If during summertime conditions the outside air temperature is higher than the return air temperature, the outside air will be cooled by means of adiabatic evaporative cooling. A major component of this is the double plate heat exchanger, in which the return air is "adiabatically" cooled. The outside air is cooled by the counterflowing humid, cold exhaust air, without itself being humidified. The high efficiency

Free cooling in summer

If during summertime conditions the outside air temperature is lower than the return air temperature, the unit can be used for free cooling. The return air/ exhaust air volume flow and the out-

Sorption-based air conditioning

Sorption-based air conditioning takes place in two stages: air dehumidification and air cooling. For dehumidification, warm outside air is passed through a waterabsorbing material (the sorbent, a highly concentrated salt solution). The dried outside air then flows through the double plate heat exchanger with indirect evaporative cooling and is significantly cooled in the process. The diluted brine is regenerated for reuse using heat. The heat sources that might be used are solar thermal plants, district heat networks or waste both processes (adiabatic evaporative cooling of the return air + cooling of the outside air) take place simultaneously in the heat exchanger. The high degree of temperature efficiency of the double plate heat exchanger allows significant cooling of the OA-SA, by over 12 K.

rate of the principle lies in the fact that

side air/supply air volume flow are fed through the bypass above and below the heat exchanger and the lower pressure loss reduces the power consumption of the fan units.

heat e.g. from combined heat and power plants or industrial processes. The air dehumidification and the regeneration of the brine take place in separate circuits. The heat can thus be stored almost indefinitely and without loss in a liquid form and can be used especially where there is no constant heat supply. Sorptionbased air conditioning allows cooling and dehumidification without mechanical refrigerating systems and without peak loads in electricity consumption during the summer.

* at RA = 26° C / 45 r.H; OA = 34° C / 40% rh.

Defrosting Circuit

All recuperative heat exchangers tend to ice over in the exhaust air section in the case of low outside temperatures. In defrost operation, the OA-SA bypass opens, reducing the outside air flow rate going through the recuperator. The heat contained in the return air melts any ice in the heat exchanger, while the airflow is routed past the recuperator is precisely regulated.

sorpsolai

Sorpsolair Type 72 and 73 (with brine tank)

System dimensions and weights

run in parallel, each unit has a controls cabinet.

** starting at unit type 72 10 01 three-cube construction

Unit type	Ľ	W ²	H³	W1	W2	W3	W4	H1	H2	H3	Weight ¹	Operating weight ¹
72 04 01	6,580	890	2,190	740	580	370	380	2,010	580	2,040	2,300	2,800
72 05 01	6,580	1,050	2,190	900	740	530	540	2,010	580	2,040	2,500	3,000
72 06 01	6,580	1,370	2,190	1,220	1,060	850	860	2,010	580	2,040	2,800	3,300
72 10 01	8,430	1,050	2,510	900	740	370	530	2,330	900	2,360	3,600	4,400
72 13 01	8,430	1,370	2,510	1,220	1,060	690	850	2,330	900	2,360	4,000	4,900
72 16 01	8,430	1,690	2,510	1,540	1,380	1,010	1,170	2,330	900	2,360	4,500	5,500
72 19 01	8,590	2,010	2,510	1,860	1,700	1,330	1,490	2,330	900	2,360	5,000	6,150
72 22 01	8,590	2,330	2,510	2,180	2,020	1,650	1,810	2,330	900	2,360	5,800	7,300

🗩 Largest transport unit *

Unit Type	Ľ	w	H³	Weight ¹
73 04 01	3,610	890	2,190	1,400
73 05 01	3,610	1,050	2,190	1,600
73 06 01	3,770	1,370	2,190	2,050
73 10 01	3,770	1,050	2,510	1,200
73 13 01	3,770	1,370	2,510	1,300
73 16 01	3,770	1,690	2,510	1,500
73 19 01	3,770	2,010	2,510	1,800
73 22 01	3,770	2,330	2,510	2,400

Controls cabinet

Unit Type	$H \ge W \ge D^1$	Design
73 04 01	2,000 x 1,000 x 400	Floor standing cabinet
73 05 01	2,000 x 1,000 x 400	Floor standing cabinet
73 06 01	2,000 x 1,000 x 400	Floor standing cabinet
73 10 01	2,000 x 1,000 x 400	Floor standing cabinet
73 13 01	2,000 x 1,000 x 400	Floor standing cabinet
73 16 01	2,000 x 1,000 x 400	Floor standing cabinet
73 19 01	2,000 x 1,000 x 400	Floor standing cabinet
73 22 01	2,000 x 1,000 x 400	Floor standing cabinet

Brine accumulator (separate)

Unit Type	L	w	Н	Weight
73 04 01	4,180	1,050	2,010	430
73 05 01	4,180	1,050	2,010	430
73 06 01	4,180	1,050	2,010	430
73 10 01	4,180	1,050	2,010	430
73 13 01	4,500	1,050	2,330	535
73 16 01	4,500	1,050	2,330	535
73 19 01	5,460	1,050	2,330	650
73 22 01	5,460	1,050	2,330	650

For service work, a clearance corresponding to dimension W is required on the operating side of the unit. If dimension W is smaller than one metre, please leave a clearance of one metre. At least one metre of clearance is required at the rear. For service work above the unit, please allow 50 mm working height clearance above the cable duct.

Please comply with the dimensions for body size, air duct connections and electrical switch cabinet.

All lengths are given in mm, weights in kg, weight incl. controls cabinet

- 1 May change depending on choosen option
- 2 Door fitting assembly increase unit width by 25 mm each operating side
- 3 incl. 120 mm base frame,
- plus 60 mm cable duct 4
- incl. 200 mm base frame Further partitioning for smaller apertures possible (at extra cost).

Technical data for Sorpsolair 72 and 73 on request

AIRPORT MUNICH, GERMANY

POSSIBLE REGENERATION SOURCES FOR THE BRINE

- Solarthermics
 Solarthermics and waste heat from refrigeration
 Solarthermics and grid gas
 Solarthermics and waste heat from cogeneration
 Solarthermics and heat pump
 Solarthermics and district heating
 Waste heat from cogeneration
 District heat

Comfort air conditioning unit with counterflow plate heat exchanger

Adconair 76 AIR VOLUME FLOW: 2,600 – 23,600 m³/h

At a glance:

- Suitable for all building types
 - Designed for the requirements of the highest energy efficiency classes

.....

- Heat recovery rate of more than 90% with just 150 Pa pressure loss
- HRC class H1, even at high air velocities

.....

- Integrated defrosting function
- Thermal bridge factor k_b = 0.78 - class TB1
- Two-stage supply air filtration
- Fulfils the requirements of the German Energy Saving Ordinance (EnEV) and the German Renewable Energies Heat Act (EEWärmeG) and the VDI 6022

.....

Summer bypass of the heat recovery system for both air flow paths With its counterflow plate heat exchanger, the Adconair 76 series is setting new standards in the ventilation industry. The new heat exchanger works with a real counterflow proportion of over 80%. The internal pressure losses of the heat recovery system measure just 150 Pa. Adconair units are optimally adapted for use in comfort air conditioning. The unit Eurovent seal refers to range Menerga Air, more information on page 6. Check ongoing validity of certificate: www.eurovent-certification.com or www.certiflash.com

series is designed to comply with the requirements of the highest energy efficiency classes. Ideal areas of application include all residential and nonresidential buildings. Thanks to its high capacity and intelligent regulation system, the units always create an excellent indoor climate.

Further performance parameters and options:

- Corrosion-free counterflow plate heat exchanger made from polypropylene
- EC fans/EffiVent
- Pumped hot water air heater
- Integrated heat recovery bypass for "free cooling"
- Integrated freely programmable control and regulation unit
- Complete unit the unit is delivered ready to install
 - Intensive quality inspection with factory test run
- Complete cleaning of the heat exchanger possible without dismantling

Options:

- Adiabatic evaporative cooling
- AdiabaticPro
- Integrated compressor refrigeration system (type approved PED97/23/EG with output-regulated heat-pump and microchannel condenser) - also available as reversable system
- Constantly regulated recirculation air heating damper
- Recuperator in short version
- Outdoor installation
- Remote maintenance
 - And many more

Sampleconfigurations

Adconair without optional equipment

Basic unit without additional equipment. The central element is the counter-flow plate heat exchanger. Ideal application areas are applications in which a high heat recovery is in the focus.

Additional equipment adiabatic evaporative cooling

Classic adiabatic evaporative cooling with temperature lowering up to 14 K^* . The ideal application area is a high demand for cooling and simultaneously high demands for heat recovery, without the need for dehumidification.

Additional equipment AdiabaticPro

This increases the power of the adiabatic evaporative cooling by additional adiabatic pre-cooling. Temperature reduction up to 15 K*. Ideal application is where a demand for cooling and a high requirement for heat recovery, without demand for dehumidification, is requested.

Additional equipment compressor refrigeration system

To increase the cooling capacity and for dehumidification. This option can be combined with adiabatic evaporation cooling, but not with AdiabaticPro. Ideally suited, if supreme comfort air with minimum energy requirements is in the focus.

Special design option: shortened recuperator

This variant can be combined with each option /additional equipment mentioned above (except AdiabaticPro). It shortens the length of the unit by 960 mm. Ideally suited, if high heat recovery needs to go into a small plant room.

 * for RA=26° C; 55 % r.h., OA=34° C; 40% r.h. and optimum air volume flow and standard density

Wintertime conditions

In case of low outside temperatures the system operates completely in heat recovery mode. The counterflow-plate heat exchanger enables the recovery of more than 90% of the heat contained in

Defrosting Circuit

All recuperative heat exchangers tend to ice over in the exhaust air section in the case of low outside temperatures. The integrated defrosting circuit melts any ice build-up by opening the RA-EA

Transitional Period

As the outside air temperatures rise, the heat recovery requirement is reduced. The bypass dampers, which run along the entire depth of the unit, are continuously regulated in order to achieve the desired supply air temperature..

If the outside temperatures continue to

Summertime conditions

If the outside temperature rises above the return air temperature, the highly efficient heat exchanger is used as a

Adiabatic (optional)*

A major component of the indirect adiabatic evaporation cooling is the counterflow plate heat exchanger in which the return air is adiabatically cooled. In turn, the outside air is cooled by the humid, cold exhaust air, without itself being humidified.The high efficiency

AdiabaticPro (optional)*

In addition to the humidification at the return air intake of the counterflow plate heat exchanger the return air is precooled lowering the wet bulb tempera-

Compressor refrigeration system (optional)

When outside air temperatures are sufficiently high, the integrated

Recirculation Air Operation (heating)*

In recirculation air mode, the outdoor and exhaust air dampers are closed. The air is heated as required via the heating coil. Rooms which are not used all of the time, the return air. The standard heating coil compensates for ventilation and transmission heat losses of the building as required.

bypass, which directs the return air straight to the area of any possible ice. The intake of fresh air is not interrupted during defrost mode.

rise, the heat recovery is completely bypassed. The structural design of the bypasses over both airflow paths ensures that the pressure losses within the device are low and that the power consumption of both fans in bypass mode is also reduced to a minimum.

"cooling recovery system". The warm outside air is cooled by the return air.

rate is due to the fact that both processes (adiabatic evaporative cooling of the return air + cooling of the outside air) take place simultaneously in the heat exchanger. The high degree of temperature efficiency of the counterflow plate heat exchanger allows significant cooling of the OA-SA.

ture by a partial flow of the circulating water. As well an additional precooling of the outside air by humidifying the exhaust air section is provided.

compressor refrigeration system cools the supply air to the desired temperature and dehumidifies it if required.

such as lecture halls or sports halls, can therefore be quickly heated before being used. * only possible with optional recirculation air heating damper

1 Recirculation air heating damper (additional equipment)

"cooling recovery system". Th

.

Adconair Type 76

System dimensions and weights

Important! Where a system is operated in parallel, the supply air and return air ducts of the two units have to be brought together.

Where units are run in parallel, each unit has a controls cabinet.

Mirror-image design possible

Unit type	L1	W ²	H ³	L11	L21	L31	W1	W2	H1	H2	Weight ^{1,4}
76 03 01	4,810	790	1,700	1,240	2,970	600	580	510	1,520	580	1,220
76 05 01	4,970	1,110	1,700	1,400	2,970	600	900	830	1,520	580	1,500
76 06 01	5,610	790	2,340	1,400	3,610	600	580	420	2,160	900	1,650
76 10 01	5,610	1,110	2,340	1,400	3,610	600	900	740	2,160	900	1,900
76 13 01	5,770	1,430	2,340	1,560	3,610	600	1,220	1,060	2,160	900	2,350
76 16 01	5,770	1,750	2,340	1,560	3,610	600	1,540	1,380	2,160	900	2,650
76 19 01	5,770	2,070	2,340	1,560	3,610	600	1,860	1,700	2,160	900	3,000
76 25 01	6,250	2,070	2,980	1,560	4,090	600	1,860	1,700	2,800	1,220	3,900
76 29 01	6,250	2,390	2,980	1,560	4,090	600	2,180	2,020	2,800	1,220	4,300
76 37 01	6,250	3,030	2,980	1,560	4,090	600	2,820	2,660	2,800	1,220	5,700

Largest transport unit

Unit Type	Ľ	W	H³	Weight ^{1,4}
76 03 01	2,970	790	1,700	660
76 05 01	2,970	1,110	1,700	810
76 06 01	3,610	790	2,340	930
76 10 01	3,610	1,110	2,340	1,110
76 13 01	3,610	1,430	2,340	1,300
76 16 01	3,610	1,750	2,340	1,500
76 19 01	3,610	2,070	2,340	1,720
76 25 01	4,090	2,070	2,980	2,330
76 29 01	4,090	2,390	2,980	2,600
76 37 01	4,090	1,515	2,980	1,750

Controls cabinet

Unit Type	$H \ge W \ge D^1$	Position at unit
76 03 01	1,120 x 640 x 210	SA/RA side
76 05 01	1,120 x 640 x 210	SA/RA side
76 06 01	1,120 x 640 x 210	SA/RA side
76 10 01	1,120 x 640 x 210	SA/RA side
76 13 01	1,120 x 640 x 210	SA/RA side
76 16 01	1,120 x 640 x 210	SA/RA side
76 19 01	1,120 x 640 x 210	SA/RA side
76 25 01	1,280 x 640 x 210	SA/RA side
76 29 01	1,280 x 640 x 210	SA/RA side
76 37 01	1,280 x 640 x 210	SA/RA side

For service work, a clearance corresponding to dimension W is required on the operating side of the unit. If dimension W is smaller than one metre, please leave a clearance of one metre. For service work above the unit, please allow 50 mm working height clearance above the cable duct. For service work at unit type 76 37 01 a clearance at the rear of at least 1.500 mm is required.

Please comply with the dimensions for body size, air duct connections and electrical switch cabinet.

All lengths are given in mm, weights in kg, weight incl. controls cabinet.

- May change depending 1 on choosen option, e.g. AdiabaticPro, compressor refri-
- AdiabaticPro, compressor refri-geration system, recuperator in short version (- 960 mm) Door fitting assembly increase unit width by 65 mm each operating side incl. 120 mm base frame, incl. 60 mm cable duct If option Adiabatic or AdiabaticPro is choosen, please affirm possible 2
- 3 4
- please affirm possible additional weight.!

Three transportation units are supplied, including controls cabinet until unit type 38 29 01. Unit type 38 37 01 is delivered in 4 trans-portation units including controls cabinet. Further partitioning for smaller apertures possible (at extra cost).

Corötotup		76 02 01	76 05 01	76 06 01	76 10 01	76 12 01	76 16 01	76 10 01	76 25 01	76 20 01	76 27 01
Ontimum flow rate	m ³ /h	2 600	3 900	4 000	6,000	7900	9 800	11 800	15 800	18/100	23 600
	0/	2,000	3,700	4,000	0,000	7,700	7,800	77	70	70	23,000
	% 0/-	74	74	70 70	70	70 70	70	70 70	/8 00	/8	//
Tetal electrical according to EN 308	90 LAN	175	70	70	/0	70 E 10	73	70 0 E 4	00	00 15 77	00 20.1E
Next suspent sensumeties 1	K V V	1.75	2.51	2.09	4.07	5.10 100	0.20	0.04 10.0	22.0	15.22	20.15
Operating voltage	A	0.0	0.0	0.0	9.0		10.0 100 V 50 H	10.0 7	52.0	34.0	44.0
					2	0 / IN / FL 4	00 0 3011	L			
Ext. pressure losses	Do	200	200	200	200	200	200	400	400	F00	F00
Poture and expand air channel	Pd	300	300	300	300	300	300	400	400	500	500
	Гđ	300	300	300	300	300	300	400	400	300	500
Sound power level ²		(7	(5	((71	(0	74	70	74	01	0.4
		67	05	00	/1	00	74	70	74		04 77
RA connection		60	65	65	69	64 50	68	/4	68	/3	77
		58	57	59	64	58	63	6/ 77	64	68 75	72
EA connection	dB(A)	59	63	62	67	64 52	67		68	75	79
Acoustic pressure in 1 m distance from device ~	UD(A)	52	52	52	57	22	27	00	60	00	70
Fan units	1347	0.05	174	1 4 4	2.10	2 72	2.2.4	4.40	(24	7.04	10.00
Rated motor input for supply air ³	KVV	0.95	1.34	1.44	2.18	2.73	3.34	4.49	6.34	7.94	10.89
Rated motor input for return air 3	KVV	0.80	1.17	1.25	1.89	2.37	2.91	4.05	5.60	7.28	9.26
SFP category supply air return air	1.147	1/2	1/2	1 2	1 2	1/2	1/2	2 3	2 3	2 3	3 3
Nominal rating supply air return air	KW	2.5 2.5	2.5 2.5	2.5 2.5	2.9 2.9	5.0 5.0	5.0 5.0	6.0 6.0	10.0 10.0	12.0 10.0	15.0 12.0
Inner specific ran power (SFPint)*	vvs/m ⁻	700	704	//6	785	/35	/31	750	/8/	//4	824
Adiabatic / evaporative cooling (optional	• we reco	ommend: opt	imum flow ra	te = max. flov	v rate	24.4	20.5	46.2	(2.0	70.0	02.7
Cooling capacity evaporative cooling °	KVV	10.1	15.1	15.7	23.5	31.1	38.5	46.3	62.9	/3.2	93.7
Rated pump input	kW	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.90
Rated input reverse osmosis system 7	KVV	0.25	0.25	0.25	0.25	0.25	0.38	0.38	0.38	0.38	0.38
AdiabaticPro (optional) ^{5,8,9} optimum flow rate = r	nax. flow rat	e		170	25.0	240	10.0	50.0	(0.4	00.0	102 7
Cooling capacity evaporative cooling °	kW	11.2	16.6	17.3	25.9	34.0	42.3	50.8	69.1	80.3	102./
Rated pump input	kW	0.90	0.90	0.90	0.90	0.90	0.90	0.90	1.00	1.00	2.00
Rated input reverse osmosis system /	kW	0.25	0.25	0.25	0.25	0.38	0.38	0.38	0.38	0.38	0.78
Rated motor input for return air 3	VV	200	250	290	390	480	550	580	920	1,020	1,630
Compressor refrigeration system (option	al) ^{8,9}										
Filling volume for refrigerant type R410A	kg	3.0	4.0	4.0	5.0	/.0	8.0	12.0	18.0	21.0	22.0
Rated compressor input	kW	2.2	2.5	2.0	3.0	3.5	4.9	5.8	6.6	7.4	10.3
Mechanical cooling capacity ^{6,10}	kW	8.2	11.7	9.9	15.8	18.7	24.5	30.4	37.2	42.3	54.9
Additional motor input for fans ³	W	120	190	230	400	330	420	440	/20	780	910
Efficiency classes according to EN 13053	2012										
Heat recovery class		H1	H1	H1	H1	H1	H1	H1	H1	H1	H1
Power consumption of fan motors SA RA		P1 P1	P1 P1	P1 P1	P1 P1	P1 P1	P1 P1	P1 P1	P1 P1	P1 P1	P2 P1
Air velocity class		V1	V1	V2	V2	V2	V2	V2	V2	V2	V2
Filtration according to DIN EN 779		1									
Supply air Outside air						F7	M5				
Return Air						M	15				
LPHW ¹¹											
Heating capacity SA=22° C	kW	4.5	6.9	5.9	9.0	11.9	14.8	17.8	19.2	22.0	28.9
Heating capacity SA=30° C	kW	11.5	17.4	16.7	25.1	33.3	41.4	49.4	62.0	71.9	92.4
Heating capacity Defrost ¹²	kW	7.0	10.6	10.9	16.3	21.4	26.6	32.1	42.4	49.1	63.2
Water flow rate and pressure losses											
LPHW	m³/h kPa	0.51 5.3	0.88 4.4	0.88 4.8	1.38 4.4	2.14 3.6	2.16 4.3	2.13 4.9	3.83 3.9	3.89 4.5	3.89 5.3
LPHW (pump warm water) valve	m³/h kPa	0.51 10.1	0.88 4.9	0.88 12.4	1.38 4.8	2.14 4.6	2.16 4.7	2.13 7.1	3.83 5.7	3.89 5.9	3.89 5.9
Connections											
LPHW connection	DN	32	32	32	32	40	40	40	50	65	65
LPHW control valve connection	DN	15	15	15	20	25	25	25	32	32	32
Condensate drainage	DN	40	40	40	40	40	40	40	40	40	40
Floor drain	DN	20	20	20	20	20	20	20	20	20	20

Specifications of technical data relate to the optimum flow rate and return air condition 22° C / 40% r.h., outside air condition -12° C / 90% r.h. and standard density (1.204 kg/m³), unless otherwise specified.

dependent on configuration of measurement and control system/unit at 250 Hz mid-band frequency with average filter contamination According EU guideline No. 1253/2014 1

2

- 3
- 4 [Ecodesign guideline]
- water quality of make-up water corresponds to 5 Water quarty of make-up water corresponds to VDI 3803 table B3 with a bacteria count < 100 CFU/ml, maximum water hardness 15° dH
 for RA=26° C / 55 % r.h., OA=32° C / 40% r.h. and optimum air volume flow and standard density
 ddiscontinuous operation, dependend on water concurrence

- water consumption
- may require alteration of the technical equipment. supplementary equipment, device length extends. Note higher power consumption of RA/SA fan units 8 9

10 SA \approx 17° C 11 FL = 70° C 12 at OA=-15° C, SA=18° C, 66% of optimum flow rate and active defrost function

Please seek approval of technical data and specifications prior to start of the planning process. With every single selection we do to your individual requirements our certified selection software automatically checks the Ecodesign compliance level 1 and 2.

Heat recovery from waste water with counterflow coaxial recuperator and heat pump

AquaCond 44 QUANTITY OF FLOW: 0.8 – 5.4 m³/h

At a glance:

- Heat recovery from clean or contaminated waste water for heating fresh water
 - Reduction of energy required to heat the fresh water by up to 90%
- Automatic heat exchanger cleaning

.....

Flow rate regulation

.....

.....

Integrated control and regulation system, compatible with all conventional building management systems Far too often, warm waste water is discharged into the sewer system, together with all the energy it contains. Units in the AquaCond 44 series recover the majority of this heat energy and transfer it to the fresh water. The combination of recuperator and heat pump means that only approx. 10% of the energy is required that would be needed by a conventional heating system. The heat exchanger cleaning system integrated in this series even allows the units to be used where the waste water is contaminated. Recovering valuable energy – anytime when warm waste water is produced and simultaneously warm fresh water has to be provided, e.g. in the shower areas of swimming pools, hospitals or residential homes, in laundries and in many other industrial processes.

Further performance parameters and options:

- Uniform pipe cross-sections throughout the waste water ducts for constant flow velocities
- Heat pump system with fully sealed suction gas-cooled coolant compressor, mounted on vibration dampers
- Complete unit, ready to connect, contains all structural elements for heat recovery from waste water, including all control and regulation fittings
- Intensive quality inspection with factory trial run

Options

- Additional pre-filtration of the waste water with coarse filters
- Design of the heat exchanger as a safety heat exchanger, for additional separation of fresh and waste water
- Recuperator bypass
- And many more

Functional description

The principle of an AquaCond unit is to heat cold clean water to process water temperature in an energy-efficient manner. The heat source used is energy from warm waste water. The transmission of heat takes place through the combination of a recuperative heat exchanger with a heat pump.

In the first stage, the warm waste water flows through the recuperator and then passes through the evaporator of the heat pump. In counterflow and physically separated, the same volume of fresh water first passes through the recuperator and then through the condenser of the heat pump. In the recuperator, the majority of the heat contained in the waste water is transferred to the cold fresh water. This process takes place by means of the efficient counterflow principle and requires no energy input whatsoever. In the evaporator of the heat pump, a further part of the heat is utilized from the waste water. In the condenser of the heat pump it is transferred to the already pre-heated fresh water. Thanks to the optimal design of the individual components, a total efficiency score of 11 is achieved.

Uniform pipe cross-sections in the waste water ducts guarantee uniformly high flow velocities. This means that the design reduces deposits of contaminants in the heat exchanger pipes and hence any worsening of the heat exchanger efficiency rating. Despite the uniform flow rates, there is a possibility that soap, grease and other substances dissolved in the warm waste water could be deposited on the exchange surfaces during the cooling phase. If the waste water is organically contaminated, bacteria growth and organic sludge formation will possibly adhere to the surface of the heat exchanger. In order to prevent this, the automatic heat exchanger cleaning system regularly passes cleaning pellets through the waste water ducts. The cleaning pellets loosen the deposits from the pipes and prevent the formation of layers on the surfaces.

AquaCond Type 44

System dimensions and weights

Unit feet 100 mm Optional: adjustable feet from 100 to 120 mm

Unit Type	L	W ¹	H ²	Weight
44 08 .1	1,050	730	1,370	430
44 12 .1	1,210	890	1,530	450
44 18 .1	1,370	890	1,690	650
44 24 .2	2,420	890	1,530	860
44 36 .2	2,740	890	1,690	1,260
44 54 .3	4,110	890	1,690	1,900

Largest transport unit

Unit Type	L	w	H²	Weight
44 08 .1	1,050	730	1,370	430
44 12 .1	1,210	890	1,530	450
44 18 .1	1,370	890	1,690	650
44 24 .2	1,210	890	1,530	460
44 36 .2	1,370	890	1,690	660
44 54 .3	1,370	890	1,690	700

Please comply with the dimensions for body size and electrical switch cabinet.

All lengths are given in mm, weights in kg, weight incl. controls cabinet.

1 Door fitting assembly increase unit width by 25 mm each operating side 2 plus unit feet

All pipes to be fitted with locking devices onsite.

Controls cabinet

Unit Type	H x W x D	Position at unit
44 08 .1	900 x 480 x 210	front side right
44 12 .1	900 x 480 x 210	front side right
44 18 .1	900 x 480 x 210	front side right
44 24 .2	1,120 x 640 x 210	front side right
44 36 .2	1,120 x 640 x 210	front side right
44 54 .3	1,600 x 640 x 250	front side right

Unit Type		44 08 .1	44 12 .1	44 18 .1	44 24 .2	44 36 .2	44 54 .3
Max. quantity of flow	m³/h	0.8	1.2	1.8	2.4	3.6	5.4
Heating capacity	kW	25	37	52	74	104	156
Rated compressor input	kW	1.8	2.6	3.4	2 x 2.6	2 x 3.4	3 x 3.4
Combined COP ¹		10.8	11.4	11.8	11.5	11.6	11.8
Filling volume for refrigerant type R407C	kg	3.0	4.0	5.0	8.0	10.0	15.0
Max. connection capacity	kW	4.0	6.4	9.6	13.0	20.0	29.0
Operating voltage				3 / N / PE 4	100 V 50 Hz		
Residual delivery head on clean water side	kPa	5	5	5	5	5	5
Pressure loss on waste water side	kPa	80	90	90	95	95	98
Connections							
Waste water	mm	32	32	40	40	50	50
Clean water CU	mm	22	22	28	28	35	35
Clean water PVC	mm	32	32	32	40	50	50

Technical data specified refer to max. volume flow rate and waste water temperature 31° C / clean water temperature 10° C

1 Power consumption including process water pump and external waste water pump

Please seek approval of technical data and specifications prior to start of the planning process.

Material key *

Кеу	Waste water heat exchanger	Waste water side piping	Clean water heat exchanger	Clean water side piping
440.	Cu	PVC	Cu	Cu
44 1st	Cu	PVC	Cu tin-plated	PVC
44 2.	Cu-Ni-10Fe	PVC	Cu	Cu
44 3rd	Cu-Ni-10Fe	PVC	Cu tin-plated	PVC

* Cu-Ni-10Fe for aggressive waste water (e.g. swimming pool waste water) Cu tin-plated, if the clean water installation downstream of the unit is made of galvanised steel pipe

Air dehumidification unit with cross counterflow plate heat exchanger and heat pump

Drysolair 11 AIR VOLUME FLOW: 1,000 - 6,000 m³/h

At a glance:

- For all drying applications
 - Low connection capacity due to an upstream installation of a recuperator

..... **Corrosion-free cross counterflow** plate heat exchanger made from polypropylene

.....

.....

Energy-saving EC fans

..... Intelligent air bypass duct

Compact design

Integrated control and regulation system, compatible with all conventional building management systems

Units in the Drysolair 11 series were developed especially for discharging high levels of internal moisture to the atmosphere. Through the pre-cooling in the recuperator of the air to be dried, the unit works with considerably lower compressor performance than a simple heat pump system and creates a consistently good climate in ice rinks, the drying of buildings or industrial drying processes. The combination of first-class components with precise control and regulation guarantees economical operation at all times and adjusts the temperature and humidity to requirements.

Further performance parameters and options:

- Specific power consumption of less than 500 Wh/kg dehumidification capacity
- Air filtration
- corrosion-free heat exchanger made from polypropylene
- Individually controllable performance parameters
- Complete unit, ready to connect, contains all structural elements for comfort air conditioning, including all control and regulation fittings
- Intensive quality inspection with factory test run

Options

- Indoor air humidity regulation
- Warm water condenser
- Remote maintenance
- And many more

Recirculation mode

In recirculation mode humid air is dehumidified in two stages and supplied into the room as dry supply air. The return air is pre-cooled and dehumidified in the plate heat exchanger.

Functional

description

The dehumidification to the desired supply air humidity level takes place by means of cooling the air to below its dew point in the evaporator of the heat pump. The air that has been dried in this manner is then warmed back up again in the condenser of the heat pump using its own heat, which was removed during cooling, and is brought to the required condition. The pre-cooling in the plate heat exchanger of the air to be dried means that the air dehumidification unit operates with a considerably lower compressor performance and hence a significantly lower energy consumption than a simple heat pump solution. The integrated bypass allows fast and precise control and adjustment to the condition of the return air. The cooling capacity is thus continuously adapted to the respective requirements.

Specific dehumidification energy requirement

Drysolair achieves a specific dehumidification energy requirement of far less than 500 Wh/kg. With one kilowatt hour of electrical energy, it is therefore possible to remove more than 2 kg of humidity from the recirculation air. In contrast, classical solutions without integrated heat recovery systems reach peak values in excess of 1,000 Wh/kg.

Drysolair Type 11

System dimensions and weights

Important! Where a system is operated in parallel, the supply air and return air ducts of the two units have to be brought together.

Mirror-image design possible.

Unit feet 100 mm Optional: adjustable feet from 100 to 120 mm

Unit type	L	W1	H²	W1	H1	H2	H3	H4	Weight
11 10 01	730	730	2,245	600	1,755	440	360	910	450
11 15 01	730	730	2,245	600	1,755	440	360	910	450
11 40 01	1,050	1,050	2,725	920	2,155	580	440	1,200	660
11 60 01	1,050	1,050	2,725	920	2,155	580	440	1,200	680

Largest transport unit

Unit Type	L	w	H ²	Weight
11 10 01	730	730	1,655	300
11 15 01	730	730	1,655	300
11 40 01	1,050	1,050	2,055	500
11 60 01	1,050	1,050	2,055	500

For service work, a clearance corresponding to dimension W is required on the operating side of the unit. If dimension W is smaller than one metre, please leave a clearance of one metre.

Please comply with the dimensions for body size, air duct connections and electrical switch cabinet.

All lengths are given in mm, weights in kg, weight incl. controls cabinet.

- Door fitting assembly increase unit width by 25 mm each operating side incl. 100 mm unit feet 1
- 2

Controls cabinet

Unit Type	H x W x D	Position at unit
11 10 01	900 x 480 x 210	SA/RA side
11 15 01	900 x 480 x 210	SA/RA side
11 40 01	900 x 480 x 210	SA/RA side
11 60 01	900 x 480 x 210	SA/RA side

Unit Type		11 10 01	11 15 01	11 40 01	11 60 01
Optimum flow rate	m³/h	1,000	1,500	4,000	6,000
Air inlet 20° C / 70% r.h. ¹					
Dehumidification capacity	kg/h	4.5	6.8	17.6	21.6
Heating capacity	kW	4.7	7.5	18.3	23.4
Specific dehumidification energy requirement	Wh/kg	382	443	386	455
Total power rating ²	kW	1.7	3.0	6.8	9.8
Compressor rated input	kW	1.2	2.3	5.5	7.1
Fan motor power rating ³	kW	0.5	0.7	1.3	2.7
SFP category		4	4	3	4
Refrigerant type ⁴			R407C		
Air inlet 10° C / 85% r.h. ¹					
Dehumidification capacity ⁵	kg/h	2.7	4.4	10.6	12.9
Heating capacity	kW	2.8	4.4	10.3	13.4
Specific dehumidification energy requirement	Wh/kg	411	407	370	485
Total power rating	kW	1.1	1.8	3.9	6.3
Compressor rated input	kW	0.6	1.1	2.7	3.6
Fan motor power rating ³	kW	0.5	0.7	1.2	2.7
SFP category		4	4	3	4
Refrigerant type ⁴			R134a		
General specifications				-	
Max. current consumption ²	A	9.1	11.9	18.5	24.2
Operating voltage		3,	/ N / PE 400 V 5	50 Hz	
External pressure loss					
Supply and return air channel	Pa	300	300	300	300
Sound power level ⁶					
Supply air vent	dB(A)	70	67	70	76
RA connection	dB(A)	65	61	62	69
Acoustic pressure at a distance of 1 m from the device ⁶	dB(A)	50	47	50	56
Filling volume for refrigerant type	kg	3.5	3.5	9.0	9.0
Connections					
Condensate drainage	DN	25	25	25	25

All technical data relate to optimum flow rate through heat recovery system and the air inlet conditions specified above and at standard density (1,204 kg/m³).

- other designs available upon request 1
- 2 dependent on configuration of measurement and control system/unit
- with average filter contamination the refrigerant type used is dependent on the application/return air conditions/design 3 4
- conditions reduction of the dehumidification capacity during 5 defrosting intervals to be taken into account

6 at 250 Hz mid-band frequency

Please seek approval of technical data and specifications prior to start of the planning process.

Ventilation unit with compressor refrigeration system for free cooling of rooms with high thermal loading

most economical operating mode!

Automatically selects the

Frecolair 14

AIR VOLUME FLOW: 2,600 - 27,000 m³/h

At a glance:

For discharging high heat loads
 Advantages of free cooling and recirc mode in a single unit
 Energy-saving EC fans
 Integrated output-regulated compressor refrigeration system
 High electrical efficiency thanks to the lowest possible internal pressure losses

Low space requirement, no additional construction measures for cooling required

.....

Integrated control and regulation system, compatible with all conventional building management systems Units in the Frecolair 14 series were developed especially for discharging high internal heat loads into the atmosphere from buildings without humidity requirements. In data processing centres and technical facilities, these units ensure reliable operation and precisely regulate the supply air temperature absolutely spot on. The variability of the operating modes, in combination with first-class components and precise control and regulation systems, guarantees economical operation at all times.

Further performance parameters and options:

- Focussing on free cooling for maximum savings on operating costs
- Filtering the air in any operating mode
- Individually controllable performance parameters
- Complete unit, ready to connect, contains all structural elements for comfort air conditioning, including all control and regulation fittings
- Intensive quality inspection with factory test run

Options

- Two-circuit cooling system to increase redundancy
- Pumped chilled water cooling coil
- Pumped hot water heating coil
- Attenuator
- Outdoor installation
- Remote maintenance
- And many more

Cooling at low outside temperatures

In order to avoid excessive drops in room temperature at low outside temperatures, a small proportion of the warm return air is added to the cold out-side air during

Free cooling at medium outside temperatures

.

In free cooling mode, the inside heat load is discharged directly via the return air. The cooling takes place exclu-

Cooling with outside air at high outside temperatures

The internal heat load is discharged directly with the return air, while in

Cooling in recirculation mode at very high outside temperatures

If the outside temperature exceeds the return air temperature, the system will automatically switch over into recirculation mode, which is more economical

Cooling with a low proportion of air from outside at high outside temperatures

If the outside temperature is higher than the return air temperature and if a proportion of air from outside is required for hygiene reasons, some outside air can be added in a regulated and hence controlled partial recirculation mode. The proportion of outside air is variably controlled.

sively through the continuously controllable proportion of outside air.

part-load operation the compressor refrigeration system cools the warm outside air to the desired supply air temperature.

in that case. The return air is cooled to the desired supply air temperature directly by the output-regulated compressor refrigeration system. No addition of warm outside air is necessary.

manner during partial recirculation mode. The return air is cooled to the desired supply air temperature directly by the output-regulated compressor refrigeration system.

Frecolair Type 14

System dimensions and weights

0A RA Ĥ +*2 12 + |-75*

Important! Where a system is operated in parallel, the supply air and return air ducts of the two units have to be brought together.

Mirror-image design possible.

- up to unit type 14 05 01 = 65 mm up to unit type 14 05 01 = 225 mm **

Where units are run in parallel, each unit has a controls cabinet.

Unit Type	L	W1	H²	W1	W2	W3	H1	H2	H3	Weight
14 03 01	2,330	730	1,490	600	440	280	1,370	600	1,240	660
14 04 01	2,490	890	1,490	760	600	360	1,370	600	1,240	700
14 05 01	2,490	1,050	1,490	920	760	440	1,370	600	1,240	800
14 06 01	2,490	730	2,130	580	420	260	2,010	900	1,860	850
14 10 01	2,650	1,050	2,130	900	740	420	2,010	900	1,860	1,210
14 13 01	2,810	1,370	2,130	1,220	1,060	580	2,010	900	1,860	1,450
14 16 01	2,970	1,690	2,130	1,540	1,380	740	2,010	900	1,860	1,670
14 19 01	2,970	2,010	2,130	1,860	1,700	900	2,010	900	1,860	1,850

Largest transport unit *

Unit Type	L	W	H²	Weight
14 03 01	2,330	730	1,370	660
14 04 01	2,490	890	1,370	700
14 05 01	2,490	1,050	1,370	800
14 06 01	2,490	730	2,010	850
14 10 01	2,650	1,050	2,010	1,210
14 13 01	2,810	1,370	2,010	1,450
14 16 01	2,970	1,690	2,010	1,670
14 19 01	2,970	2,010	2,010	1,850

Controls cabinet

Unit Type	H x W x D	Position at unit
14 03 01	1120 x 640 x 210	SA/RA side
14 04 01	1120 x 640 x 210	SA/RA side
14 05 01	1120 x 640 x 210	SA/RA side
14 06 01	1280 x 640 x 210	SA/RA side
14 10 01	1280 x 640 x 210	SA/RA side
14 13 01	1280 x 640 x 210	SA/RA side
14 16 01	1280 x 640 x 210	SA/RA side
14 19 01	1280 x 640 x 210	SA/RA side

For service work, a clearance corresponding to dimension W is required on the operating side of the unit. If dimension W is smaller than one metre, please leave a clearance of one metre.

Please comply with the dimensions for body size, air duct connections and electrical switch cabinet.

All lengths are given in mm, weights in kg, weight incl. controls cabinet.

Door fitting assembly increase unit width by 25 mm each operating side incl. 120 mm base frame Further partitioning for smaller apertures possible (at extra cost). 1 2

Frecolair Type 14

System dimensions and weights

Important! Where a system is operated in parallel, the supply air and return air ducts of the two units have to be brought together.

Where units are run in parallel, each unit has a controls cabinet.

Unit Type	L	W1	H ²	L1	L2	W1	W2	W3	H1	H2	Weight
14 25 01	3,220	2,010	2,860	2,010	1,210	1,860	1,700	900	2,740	1,220	2,150
14 32 01	3,540	2,010	3,500	2,330	1,210	1,860	1,700	900	3,380	1,540	2,350
14 36 01	3,540	2,330	3,500	2,330	1,210	2,180	2,020	1,060	3,380	1,540	2,550

Largest transport unit *

Unit Type	L	w	H²	Weight
14 25 01	2,010	2,010	2,740	1,800
14 32 01	2,330	2,010	3,380	1,950
14 36 01	2,330	2,330	3,380	2,100

For service work, a clearance corresponding to dimension W is required on the operating side of the unit. If dimension W is smaller than one metre, please leave a clearance of one metre.

Please comply with the dimensions for body size, air duct connections and electrical switch cabinet.

All lengths are given in mm, weights in kg.

- Door fitting assembly increase unit width by 25 mm each operating side inkl. 120 mm base frame
- 2
- Further partitioning for smaller apertures possible (at extra cost).

Controls cabinet

Mirror-image design possible.

Unit Type	H x W x D	Position at unit
14 25 01	1,280 x 640 x 210	SA/RA side
14 32 01	1,600 x 640 x 250	SA/RA side
14 36 01	1,600 x 640 x 250	SA/RA side

Unit Type		14 03 01	140401	140501	14 06 01	14 10 01	14 13 01	14 16 01	14 19 01	14 25 01	14 32 01	143601
Optimum flow rate												
Return air/supply air	m³/h	2,600	3,300	4,000	4,700	7,100	9,500	11,800	14,200	18,700	24,000	27,000
Outside air/exhaust air	m³/h	3,500	4,600	5,300	6,300	9,500	12,600	15,800	19,000	25,000	32,000	36,000
Total electrical power rating ¹	kW	4.6	5.7	6.8	8.2	12.9	14.7	19.5	23.2	30.6	37.8	45.6
Max. current consumption ¹	А	12.2	15.2	18.2	19.7	29.8	34.2	39.1	63.2	80.8	84.8	107.5
Operating voltage						3/N/	PE 400 \	/ 50 Hz				
Compressor refrigeration system ²												
Cooling capacity	kW	11.3	14.2	17.5	19.9	30.8	38.7	47.5	58.1	72.6	85.4	99.0
Effective cooling capacity	kW	10.5	13.1	16.2	18.2	28.1	35.2	43.4	52.7	65.7	76.7	88.8
Compressor	kW	2.6	3.3	4.0	4.7	7.6	8.3	10.4	12.1	16.3	19.5	24.8
Refrigeration capacity	EER	4.3	4.3	4.4	4.2	4.1	4.7	4.6	4.8	4.5	4.4	4.0
External pressure loss										-		
Outside air/exhaust air duct	Pa	300	300	300	300	300	300	400	400	400	400	400
Return air/supply air duct	Pa	300	300	300	300	300	300	400	400	400	400	400
Sound power level ³												
RA connection	dB(A)	80	76	76	77	84	80	82	86	84	86	86
EA connection	dB(A)	74	76	79	81	84	81	83	82	86	85	89
Outside air vent	dB(A)	78	73	74	76	83	79	81	82	82	82	83
Supply air vent	dB(A)	77	76	80	82	82	82	84	85	86	86	88
Fan units												
Rated motor input for supply air ⁴	kW	0.86	0.99	1.17	1.41	2.31	2.58	3.80	4.80	5.92	7.95	8.61
Rated motor input for exhaust air ⁴	kW	1.11	1.39	1.61	2.09	3.03	3.83	5.34	6.26	8.37	10.38	12.16
Nominal rating supply air return air	kW	1.7 1.7	1.7 1.7	1.7 3.0	1.7 3.0	3.0 5.5	4.7 4.7	4.7 11.0	9.4 9.4	9.4 16.5	14.1 14.1	14.1 22.0
LPHW (optional) ⁵												
Heating capacity ⁶	kW	32.1	41.4	50.4	52	78	105	131	158	211	270	309
Pressure loss LPHW	kPa	8.9	12.6	10.7	11	6	5	5	5	5	7	7
Pressure loss LPHW valve	kPa	12.3	20.0	12.2	12	11	8	12	8	5	9	11
LPHW connection	DN	20	20	25	25	32	40	50	50	65	65	65
LPHW control valve connection	DN	15	15	20	20	25	32	32	40	50	50	50

All technical data relate to the optimum flow rate through heat recovery system and outside air conditions 32° C / 40% r.h., return air conditions 28° C / 40% r.h.

dependent on configuration of measurement and control system/unit recirc air cooling mode, SA \approx 17° C at 250 Hz mid-band frequency with average filter contamination note higher power consumption of OA fan units FL = 70° C; Air on temperature 15° C 1

2 3 4 5 6

Please seek approval of technical data and specifications prior to start of the planning process.

Cooling of rooms with high thermal loading by means of indirect free cooling, adiabatic evaporative cooling, and an output-regulated compressor refrigeration system

Adcoolair 75

TOTAL COOLING CAPACITY: 11.1 kW – 226.6 kW

At a glance:

- Efficient cooling through the use of natural resources
- Compact dimensions, optimised for installation in plant rooms without an additional cooling tower
- Reliable cooling, even when outside temperatures are very high
- No contamination of the process airflow with dust or corrosive pollutants
- Moisture content of the process air remains unaffected
- Low airflow rate required for heat dissipation
- Excellent PUE values of up to 1.1
- Integrated control and regulation system, compatible with all conventional building management systems

Thanks to the combination of indirect free cooling, adiabatic evaporative cooling and the integrated output-regulated compressor refrigeration system, each of which supports the effectiveness of the others, the Adcoolair 75 unit series allows heat dissipation in recirculation mode from data processing centres and other rooms with high thermal loads, with minimal space requirements, low air pressure drops within the unit and very little energy

consumption. The use of energy-efficient EC fan units, in combination with a demand-based flow rate control system, additionally contributes to the reduction of operating costs. The Adcoolair 75 unit series is optimally adapted to high return air temperatures. The combination of first-class components with precise control and regulation systems guarantees economical operation at all times.

Further performance parameters and options:

- Highest electrical efficiency, as all components are designed for minimal pressure losses
- Energy-saving EC fans
- Corrosion-free cross counterflow plate heat exchanger made from polypropylene
- Oil sump heater that can be switched off
- Use of electronic expansion valves
- Filtering the air in any operating mode
 Individually controllable performance parameters
- Complete unit, ready to connect, contains all structural elements for recirc air cooling, including all control

and regulation fittings

- Intensive quality inspection with factory test run

Options

- Integrated exhaust air/outside air bypass to avoid formation of condensate at low outside temperatures
- Hot water extraction, to use waste heat for heating purposes
- Pumped chilled water cooling coil instead of integrated compressor refrigeration system
- Outdoor installation
- Remote maintenance
- And many more

Indirect free cooling at low outside air temperatures

The warm process air from the room with high thermal loads is drawn in via the return air fan and through an asymmetrical cross-counterflow recuperator. In order to extract the heat from the process air. The outside air is passed through the recuperator in a second air flow path, physically separate from the process air. The process air is cooled down in the recuperator through the cooling potential of the outside air. The outside air is variably adjusted, depending on the outside air temperature: with lower outside air temperature, the volume flow rate is reduced. The use of adiabatic evaporative cooling and the compressor refrigeration system is not required at that stage.

The process air is cooled down using indirect adiabatic evaporative cooling. The use of the compressor refrigeration system is not yet required. Even at low outside temperatures, heat exchange can take place using adiabatic humidification. As a result of this, the OA/EA volume flow rate dissipating the heat can be kept low, and this reduces the power consumption of the fan/motor unit.

Operation at high outside temperatures

In summertime conditions at very high outside air temperatures and in addition to the adiabatic evaporative cooling, the compressor refrigeration system with output-controlled scroll compressors is activated. In the first stage, the outside air is humidified and then cooled through the evaporation of the water. The cooled outside air indirectly extracts heat from the warm process air in the recuperator. Thus, the process air is significantly cooled, but not humidified. In the second stage, the downstream evaporator is used to cool the process air to the desired supply air temperature. The heat extracted from the process air is transferred to the exhaust air. As the adiabatic evaporative cooling delivers approximately 50% of the required refrigeration capacity, the continuously adjustable compressor refrigeration system is correspondingly dimensioned for approximately 50% of the total cooling capacity. This allows the lowest possible pressure losses to be maintained at the evaporator and condenser.

Optional: EA/OA bypass

In order to prevent dehumidification of the process air, the outside air can be preheated by means of an integrated

Optional:

Warm water condenser

Via a warm water condenser, the heat extracted from the process air at the evaporator can be used for heating or hot process water. The integrated compressor refrigeration system operates as tion of the return air humidity in the recuperator.

EA/OA bypass. This prevents condensa-

a heat pump in this mode. The control system ensures that the heat pump is primarily used when heat is required.

Adcoolair Type 75

System dimensions and weights

- W3 -

Fresh water connection

Mirror-image design possible.

Where units are run in parallel, each unit has a controls cabinet.

* starting at 75 32 01, divided lengthways

Unit type	L	W1	H²	L1	L2	W1	W2	W3	H1	H2	H3	H4	Weight
75 02 01	2,900	730	2,130	1,370	1,530	580	580	580	2,010	740	1,220	580	1,020
75 04 01	2,900	1,050	2,130	1,370	1,530	900	900	580	2,010	740	1,220	580	1,240
75 06 01	2,900	1,370	2,130	1,370	1,530	1,220	1,220	580	2,010	740	1,220	580	1,430
75 08 01	3,380	1,050	2,770	1,690	1,690	900	900	940	2,650	1,220	1,540	900	1,490
75 13 01	3,380	1,370	2,770	1,690	1,690	1,220	1,220	940	2,650	1,220	1,540	900	1,800
75 22 01	3,380	2,650	2,770	1,690	1,690	2,500	2,500	940	2,650	1,220	1,540	900	2,660
75 32 01	4,020	3,060	3,250	1,850	2,170	2 x 1,380	2,910	1,300	3,130	1,540	2,020	900	4,180
75 42 01	4,020	4,020	3,250	1,850	2,170	2 x 1,860	3,870	1,300	3,130	1,540	2,020	900	5,360
75 52 01	4,020	4,660	3,250	1,850	2,170	2 x 2,180	4,510	1,300	3,130	1,540	2,020	900	6,170

Largest transport unit

Unit Type	L	w	H²	Weight
75 02 01	1,530	730	2,130	600
75 04 01	1,530	1,050	2,130	720
75 06 01	1,530	1,370	2,130	840
75 08 01	1,690	1,050	2,770	850
75 13 01	1,690	1,370	2,770	1,050
75 22 01	1,690	2,650	2,770	1,500
75 32 01	2,170	3,060	3,250	2,500
75 42 01	2,170	4,020	3,250	3,150
75 52 01	2,170	4,660	3,250	3,630

Controls cabinet

Unit Type	H x W x D	Position at unit
75 02 01	1,120 x 640 x 210	SA/RA side
75 04 01	1,120 x 640 x 210	SA/RA side
75 06 01	1,280 x 640 x 210	SA/RA side
75 08 01	1,280 x 640 x 210	SA/RA side
75 13 01	1,280 x 640 x 210	SA/RA side
75 22 01	1,280 x 640 x 210	SA/RA side
75 32 01	1,280 x 640 x 210	SA/RA side
75 42 01	1,600 x 640 x 210	SA/RA side
75 52 01	1,600 x 640 x 210	SA/RA side

For service work, a clearance corresponding to dimension W is required on the operating side of the unit. If dimension W is smaller than one metre, please leave a clearance of one metre.

Please comply with the dimensions for body size, air duct connections and electrical switch cabinet.

All lengths are given in mm, weights in kg, weight incl. controls cabinet.

1 Door fitting assembly increase unit width by 25 mm each operating side incl. 120 mm base frame

2

Unit Type		75 02 01	75 04 01	75 06 01	75 08 01	75 13 01	75 22 01	75 32 01	75 42 01	75 52 01
Total cooling capacity ¹	kW	11.7	22.1	31.1	37.8	54.1	103.5	156.1	201.9	246.5
Air volume flow process air	m³/h	2,200	4,500	6,300	7,900	11,000	22,000	32,000	42,000	50,000
Air volume flow OA-EA	m³/h	1,300	2,700	3,800	4,700	6,600	13,200	19,200	25,200	30,000
Energy Efficiency Ratio ²	EER	5.5	7.5	7.5	8.3	8.2	9.3	9.0	9.1	9.2
Total electrical power rating ³	kW	3.2	5.1	7.3	8.3	11.7	21.3	31.3	40.3	49.2
Max. current consumption ³	А	8.9	13.7	21.7	29.3	33.3	62.0	81.3	116.7	127.7
Operating voltage					3/N/	' PE 400 V	50 Hz			
Ext. pressure loss										
Process air (Return air and supply air duct)	Pa	250	250	250	250	250	250	250	250	250
Outside air and exhaust air duct	Pa	250	250	250	250	250	250	250	250	250
Sound power level ⁴										
Supply air vent	dB(A)	60	64	71	68	69	72	73	74	78
RA connection	dB(A)	61	67	72	72	70	73	75	76	80
Outside air vent	dB(A)	70	66	68	75	68	71	73	73	75
EA connection	dB(A)	74	65	68	74	69	72	71	72	73
Acoustic pressure in 1 m distance from device ⁴	dB(A)	58	52	57	59	56	59	59	60	63
Fan units										
Rated motor input for process air ⁵	kW	0.56	1.28	1.94	2.21	3.02	6.06	8.40	10.80	13.92
Rated motor input for outside air ⁵	kW	0.48	0.88	1.22	1.59	2.05	4.10	5.58	7.20	8.64
SFP category supply air/outside air		3 3	3 3	3 3	3 3	3 3	3 3	3 3	3 3	3 3
Evaporative cooling ⁶										
Cooling capacity of adiabatic evaporative cooling system	kW	4.8	9.9	14.0	17.4	24.2	48.4	70.3	92.2	110.5
Rated pump input for evaporative cooling	kW	0.64	0.64	0.64	0.64	0.79	0.79	1.58	1.58	1.58
Compressor refrigeration system										
Filling volume for refrigerant type R407C	kg	5.0	7.0	9.0	11.0	17.0	34.0	46.0	70.0	78.0
Rated compressor input	kW	1.5	2.3	3.5	3.9	5.8	10.3	15.7	20.7	25.1
Mechanical cooling capacity	kW	6.9	12.2	17.1	20.4	29.9	55.1	85.8	109.7	136.0
Number of cooling circuits		1	1	1	1	1	1	2	2	2
Number of compressors		1	1	1	1	1	2	2	2	4
Compressor power modulation		single stage output-controlled scroll compressor 10 - 100%								
Filtration according to DIN EN 779										
Outside air						M5				
Return Air						M5				
Connections										
Clean water connection ⁷	DN	15	15	15	15	15	15	15	15	15
Slurry drain	DN	50	50	50	50	50	50	50	50	50
Floor drain	DN	40	40	40	40	40	40	40	40	40

Specifications of technical data relate to the return air conditions 34° C / 20% r.h., outside air conditions 35° C / 40% r.h., at standard density (1.204 kg/m³), unless there is a coefficient otherwise specified

1 2

Evaporative cooling + compressor refrigeration system; SA = 20° C Taking into account power consumption for adiabatic pump(s) dependent on configuration of measurement and control system/unit At 250 Hz mid-band frequency and standard unit housing with average filter contamination 3

Δ 5

water quality of make-up water corresponds to VDI 3803 table B3 with a bacteria count < 100 CFU/ml, water hardness range "soft". 2 bar system pressure required at 25 l/min flow rate 6

7

Please seek approval of technical data and specifications prior to start of the planning process.

Adcoolair

Compact chilled water unit for indoor installation with free cooling, adiabatic evaporative cooling and integrated compressor refrigeration system

Automatically selects the most economical operating mode!

Hybritemp 97 and 98 TOTAL COOLING CAPACITY: 33 kW - 455 kW

At a glance:

- Efficient cooling through the use of natural resources
- Very high performance with high EER and ESEER values at the same time
- Reliable cooling, even when outside temperatures are very high
- Compressor refrigeration system and free cooler optimally adapted to the respective application
- Compact design thanks to integrated recooling system, removing the need for cooling system components on the facade or on the roof
- Low air volumes required for heat dissipation
- Integrated control and regulation system, compatible with all conventional building management systems

Cooling systems using chilled water can be found in a wide range of areas: For discharging excess heat from rooms with high thermal loads, for cooling industrial manufacturing processes or for comfort air conditioning of buildings. The units of the Hybritemp 97 and 98 series are optimally adapted to these requirements. The "all-in-one" unit offers efficient cooling in a very compact way. It is generally not necessary for cooling system components to be installed at or on the exterior of the building – and this

drastically reduces the overall investment costs. Hybritemp has been developed in two design variants: The COP-optimised 97 series is characterised by its very high efficiency, while the development of the 98 series focussed on achieving maximum performance with minimum space requirements. The combination of first-class components with precise control and regulation systems guarantees economical operation at all times.

Further performance parameters and options:

- High corrosion prevention through the use of zinc sacrificial anodes, EPD-coated parts and components made from plastic
- Use of electronic expansion valves
- Energy-saving EC fans
- Filtering the air in any operating mode
- Individually controllable performance parameters
- Complete unit, ready to connect, contains all structural elements for chilled water generation, including all control and regulation fittings

 Intensive quality inspection with factory test run

Options

- Conductivity-controlled elutriation control when using softened water
- Hot water extraction, to use waste heat for heating purposes
- Remote maintenance
- And many more

Free and evaporative cooling

At respective low outside air temperatures and humidity, the heat in the process water is dissipated to the outside air. In order to reduce the outside air temperature further and to increase the cooling capacity, evaporative cooling is

Part-load operation with free and evaporative cooling: Compressor refrigeration system condenses in the exhaust air

When outside air temperature and humidity are rising, the amount of heat that can be dissipated by evaporative cooling will reduce. If the process water in the intermediate heat exchanger can no longer be cooled down to the required flow temperature, after-cooling takes

Free and evaporative cooling in operation under load: Compressor refrigeration system condenses in the exhaust air and secondary circuit

When an increasing part of the total cooling performance is carried out by the compressor refrigeration system, the condensation heat can no longer be passed solely onto the exhaust air. A proportion of the water is directed from the secondary circuit downstream of the intermediate

Operation under full load: Cooling by the compressor refrigeration system

If the water temperature in the secondary circuit is higher than the process water temperature, the total cooling capacity required comes from the compressor refrigeration system. Due to the two-stage condensation heat output in the air condenser (desuperheater) to the exhaust air activated. In an intermediate heat exchanger, the process water is cooled down to the required flow temperature. The cooling capacity is controlled continuously by varying the air volume flow rate.

place in the evaporator of the integrated compressor refrigeration system. The heat of condensation from the multistage compressor refrigeration system in part-load operation is passed onto the exhaust air.

and in the water condenser to the secondary circuit, only a very low air volume is required. Thanks to the upstream evaporative cooling system, low condensation pressures are achieved, which in return lead to a high EER in the compressor refrigeration system.

Hybritemp Type 97 and Type 98

System dimensions and weights

Caution! Where units are run in parallel, each unit has a controls cabinet.

Mirror-image design possible.

		Unit Type	L	W1	H²	L1	L2	L3	W1	H1	H2	Weight	Operating weight
		97 04 01	3,700	890	1,650	2,010	1,690	900	740	1,530	580	1,300	1,470
		97 05 01	3,700	1,050	1,650	2,010	1,690	900	900	1,530	580	1,500	2,070
6	2 S S S	97 06 01	4,340	730	2,310	2,010	2,330	1,220	580	2,190	900	1,800	2,490
Q	<u>jë</u>	97 10 01	4,500	1,050	2,130	2,170	2,330	1,220	900	2,010	900	2,200	3,250
1	₽ Ĵ	97 13 01	4,660	1,370	2,130	2,330	2,330	1,220	1,220	2,010	900	3,000	4,390
-	u -	97 16 01	4,820	1,690	2,130	2,490	2,330	1,220	1,540	2,010	900	3,500	5,240
		97 19 01	4,820	2,010	2,130	2,490	2,330	1,220	1,860	2,010	900	4,000	6,110
		98 04 01	3,700	890	1,970	2,010	1,690	900	740	1,850	580	1,600	2,070
∞	ل ه –	98 05 01	3,700	1,050	1,970	2,010	1,690	900	900	1,850	580	1,700	2,270
0	sed	98 06 01	4,980	730	2,450	2,650	2,330	1,220	580	2,330	900	2,100	2,800
Q	ÊĒ	98 10 01	4,980	1,050	2,450	2,650	2,330	1,220	900	2,330	900	2,550	3,220
X	fg	98 13 01	4,660	1,370	2,450	2,330	2,330	1,220	1,220	2,330	900	3,400	4,830
	a -	98 16 01	4,820	1,690	2,450	2,490	2,330	1,220	1,540	2,330	900	3,900	5,700
		98 19 01	4,820	2,010	2,450	2,490	2,330	1,220	1,860	2,330	900	5,000	7,170

Largest transport unit *

Unit Type	L	w	H²	Weight
97 04 01	2,010	890	1,650	770
97 05 01	2,010	1,050	1,650	930
97 06 01	2,330	730	2,310	730
97 10 01	2,330	1,050	2,130	910
97 13 01	2,330	1,370	2,130	1,830
97 16 01	2,490	1,690	2,130	2,140
97 19 01	2,490	2,010	2,130	2,490
98 04 01	2,010	890	1,970	1,030
98 05 01	2,010	1,050	1,970	1,100
98 06 01	2,650	730	2,450	1,300
98 10 01	2,650	1,050	2,450	1,590
98 13 01	2,330	1,370	2,450	2,160
98 16 01	2,490	1,690	2,450	2,500
98 19 01	2,490	2,010	2,450	3,420

Controls cabinet

Unit Type	H x W x D	Position/design
97 04 01	1,600 x 640 x 250	EA side
97 05 01	1,600 x 640 x 250	EA side
97 06 01	1,600 x 640 x 250	EA side
97 10 01	1,600 x 640 x 250	EA side
97 13 01	1,800 x 1,000 x 400	Floor standing cabinet
97 16 01	1,800 x 1,000 x 400	Floor standing cabinet
97 19 01	1,800 x 1,200 x 400	Floor standing cabinet
98 04 01	1,600 x 640 x 250	EA side
98 05 01	1,600 x 640 x 250	EA side
98 06 01	1,800 x 1,000 x 400	Floor standing cabinet
98 10 01	1,800 x 1,000 x 400	Floor standing cabinet
98 13 01	1,800 x 1,000 x 400	Floor standing cabinet
98 16 01	1,800 x 1,200 x 400	Floor standing cabinet
98 19 01	1,800 x 1,200 x 400	Floor standing cabinet

For service work, a clearance corresponding to dimension W is required on the operating side of the unit. If dimension W is smaller than one metre, please leave a clearance of one metre. For service work a clearance at the rear of at least 1.500 mm is required.

T₁₂

Please comply with the dimensions for body size, air duct connections and electrical switch cabinet.

All lengths are given in mm, weights in kg, weight incl. controls cabinet.

- Door fitting assembly increase unit width by 25 mm each operating side
- 2 incl. 120 mm base frame
 * Further partitioning for smaller apertures possible (at extra cost).

Hybritemp Type 97 efficiency-optimised

Technical specifications and services

Unit Type		97 04 01	97 05 01	97 06 01	97 10 01	97 13 01	97 16 01	97 19 01
Cooling capacity ^{1, 5}	kW	33 - 48	45 - 64	56 - 81	74 - 106	118 - 168	148 - 217	172 - 247
Refrigeration capacity ²	ESEER	5.5	5.5	5.5	5.4	5.5	5.5	5.2
Nominal water volume flow rate for process water	m³/h	5.0	7.0	8.0	11.0	17.0	21.0	25.0
Air volume flow OA-EA	m³/h	4,400	5,300	6,300	9,500	13,000	16,000	19,000
Rated fan motor input for exhaust air ³	kW	2.0	2.3	3.3	4.6	6.4	7.6	8.8
Rated pump input	kW	1.3	1.3	1.3	1.3	1.4	1.4	1.6
Filling volume for refrigerant type R407C	kg	10	12	17	22	18	20	23
Number of performance stages		2	2	3	3	4	4	4
Number of cooling circuits		1	1	2	2	2	2	2
Max. current consumption	А	37.6	43.4	61.9	70.8	104.1	150.1	165.0
Operating voltage				3 / N	/ PE 400 V	50 Hz		
Ext. pressure loss								
Outside air and exhaust air duct	Pa	300	300	300	300	300	300	300
Sound power level ⁴								
Outside air vent	dB(A)	66	64	71	67	73	75	71
EA connection	dB(A)	76	74	77	76	79	80	79
Acoustic pressure at a distance of 1 m from the device ⁴	dB(A)	58	56	59	58	61	62	61
6° C process water flow								
Total cooling capacity ⁵	kW	33.3	45.1	55.7	73.6	117.5	148.3	171.7
Energy Efficiency Ratio	EER	5.0	4.8	4.7	4.9	4.8	4.7	4.5
Rated compressor input	kW	6.7	9.3	11.7	15.1	24.5	31.8	37.9
Alternative process water temperatures								
12° C process water flow								
Total cooling capacity ⁵	kW	39.5	53.3	66.5	87.3	139.1	177.5	203.5
Energy Efficiency Ratio	EER	5.6	5.5	5.4	5.5	5.4	5.3	5.1
Rated compressor input	kW	7.0	9.6	12.3	15.8	25.6	33.3	39.8
18° C process water flow								
Total cooling capacity ⁵	kW	47.8	64.4	81.4	106.0	168.4	217.2	246.6
Energy Efficiency Ratio	EER	6.5	6.4	6.2	6.3	6.2	6.1	5.8
Rated compressor input	kW	7.4	10.0	13.3	16.9	27.2	35.4	42.6
Connections								
Clean water connection 6,7	DN	15	15	20	20	20	20	20
Slurry drain	DN	50	50	80	80	80	80	80
Water drain	DN	25	25	25	32	32	40	40
Floor drains	DN	40	40	40	40	40	40	40
Process water flange	DN	50	50	50	65	80	80	80
Pressure loss process water	kPa	80	80	80	80	80	80	80

Please seek approval of technical data and specifications prior to start of the planning process.

Technical data specified refer to nominal volume flow rate at 6° C flow temperature and outside air conditions 32° C 40% r.h., unless otherwise specified

dependent on flow/return temperature and water flow rate at flow = 6° C with average filter contamination at 250 Hz mid-band frequency at OA = 32° C; 40% r.h. 1

- 2 3 4

5

at UA = 52° C; 40% r.n. 2 bar system pressure required at 25 l/min flow rate water quality of make-up water corresponds to VDI 3803 table B2 with a bacteria count < 100 CFU/ml, water hardness range "soft". 6 7

Hybritemp Type 98 performance-optimised

Unit Type		98 04 01	98 0501	98 06 01	98 10 01	98 13 01	98 16 01	98 19 01
Cooling capacity ^{1,5}	kW	65 - 93	79 - 112	102 - 145	133 - 189	196 - 278	244 - 350	319 - 455
Refrigeration capacity ²	ESEER	4.7	4.7	4.7	5.0	4.9	5.1	4.9
Nominal water volume flow rate for process water	m³/h	10.0	12.0	15.0	20.0	29.0	36.0	45.0
Air volume flow OA-EA	m³/h	4,400	5,300	6,300	9,500	13,000	16,000	19,000
Rated fan motor input for exhaust air ³	kW	2.0	2.3	3.5	4.8	6.6	7.8	9.2
Rated pump input	kW	1.3	1.3	1.3	1.3	2.2	1.4	1.6
Filling volume for refrigerant type R407C	kg	9	16	25	45	55	60	85
Number of performance stages		2	2	2	2	3	3	4
Number of cooling circuits					1			
Max. current consumption	А	58.6	79.6	97.8	121.0	183.7	213.6	279.0
Operating voltage				3 / N	/ PE 400 V	50 Hz		
Ext. pressure losses								
Outside air and exhaust air duct	Pa	300	300	300	300	300	300	300
Sound power level ⁴								
Outside air vent	dB(A)	66	64	71	68	73	76	72
EA connection	dB(A)	76	74	78	77	80	81	79
Acoustic pressure at a distance of 1 m from the device ⁴	dB(A)	58	56	60	59	62	63	61
6° C process water flow								
Total cooling capacity ⁵	kW	65.0	78.8	102.4	132.9	195.8	244.4	318.5
Energy Efficiency Ratio	EER	3.5	3.6	3.4	3.8	3.6	3.8	3.6
Rated compressor input	kW	18.6	21.9	29.7	35.0	53.9	64.4	88.9
Alternative process water temperatures								
12° C process water flow								
Total cooling capacity ⁵	kW	76.8	93.0	120.4	156.9	231.0	289.3	376.5
Energy Efficiency Ratio	EER	3.9	4.0	3.8	4.2	4.0	4.2	4.0
Rated compressor input	kW	19.5	23.1	31.6	37.1	57.1	68.3	94.3
18° C process water flow								
Total cooling capacity ⁵	kW	92.7	111.9	144.7	189.3	278.4	350.4	455.4
Energy Efficiency Ratio	EER	4.5	4.5	4.3	4.8	4.5	4.8	4.5
Rated compressor input	kW	20.6	24.7	34.0	39.8	61.4	73.5	101.6
Connections								
Clean water connection ^{6,7}	DN	15	15	15	15	15	20	20
Slurry drain	DN	50	50	80	80	80	80	80
Water drain	DN	25	25	25	32	32	40	40
Floor drains	DN	40	40	40	40	40	40	40
Process water flange	DN	50	50	50	65	80	80	100
Pressure loss process water	kPa	80	80	80	80	80	80	80

Technical data specified refer to nominal volume flow rate at 6° C flow temperature and outside air conditions 32° C 40% r.h., unless otherwise specified

dependent on flow/return temperature and water 1

flow rate at flow = 6° C with average filter contamination at 250 Hz mid-band frequency at $0A = 32^\circ$ C; 40% r.h. 2 3 4

5 6 7 at OA = 52° C; 40% r.n. 2 bar system pressure required at 25 l/min flow rate water quality of make-up water corresponds to VDI 3803 table B2 with a bacteria count < 100 CFU/ml, water hardness range "soft". Please seek approval of technical data and specifications prior to start of the planning process.

Mini glossary

Heat recovery efficiency

According to VDI 2071, this is defined as the ratio of the temperature difference between the supply air and the outside air to the temperature difference between the return air and the outside air in a ventilation system with heat recovery. This key figure describes the proportion of the theoretically useable energy from the return air that is transferred to the supply air. Sensitive and latent heat are taken into consideration. Described in %. Heat recovery rates of over 100% are theoretically possible.

Temperature efficiency = heat recovery efficiency = heat provision level

Ratio of the transferred temperature in the heat recovery system to the difference of temperature of the inlet media. This key figure describes how much energy can be recovered from the return air and transferred to the outside air to heat the supply air. Caution: waste heat from the fans is taken into consideration! The energy content of humid air (latent heat) is not taken into consideration. On the basis of EN 308, the values must be specified under dry conditions. The heat recovery efficiency is indicated using Φ , and lies between 0 and 1. If balanced volume flows and low internal leakage are assumed, the temperature efficiency fundamentally corresponds to the heat provision level.

Efficiency

Specification of the heat recovery efficiency as a percentage. In a counterflow plate heat exchanger, for example, the heat recovery efficiency relative to the outside air is Φ = 0.8. The efficiency is thus 80%.

Moisture recovery efficiency

Is calculated in a similar manner to the heat recovery efficiency, for the recovery of atmospheric moisture. The moisture recovery efficiency is specified using Ψ , and the absolute moisture content is specified in g/kg using X.

Energy efficiency under DIN EN 13053

Taking into consideration the dry temperature efficiency under EN 308 and the electrical energy requirements for overcoming the pressure loss in the heat recovery system in cirr paths.

.....

SFP classes

The specific fan power defines the ratio of electrical fan power consumed to the air volume flow rate moved. The smaller the SFP value, the less electrical energy is required to move one cubic metre of air.

Air velocity class V according to DIN EN 13053:2012

Measured penetration velocity (m/s) in the clear opening of the housing crosssection relative to the filter unit, or to the fan unit if no filter is present. The greater the value (and correspondingly the V class in the classification, V1 - V9), the higher the velocity. **Classification, see below.**

••••••

Power input Fan-motor unit P according to DIN EN 13053:2012

Reference values in classes P1 - P7, determined by the air volume flow rate and the static pressure increase of a free-running fan. The power measurement also includes losses from the frequency converter and the fan motor. The lower the class, the higher the efficiency of the fan-motor unit. Classification, see below.

Energy efficiency H1 according to DIN EN 13053:2012

The energy efficiency is calculated from the temperature transfer rate and the electrical consumption generated by the pressure loss of the air volume flow rate and the motor power for the fans and pump. Classification of values in classes H1 - H6: the lower the class, the higher the efficiency.

Classification, see below.

••••••

VDI 2089

Basic planning standard for heating, dehumidification, indoor air-conditioning, sanitary, and electrical systems in indoor swimming pool buildings open to the public. Applies both to new constructions and to the modernisation of existing facilities.

•••••

VDI 6022

Basic planning standard for hygiene in ventilation and air conditioning systems and equipment, with the objective of at least having no negative effect on indoor air. Definition of requirements for the planning, installation and operation of HVAC systems, HVAC units, and their components.

••••••

VDI 3803 Sheet 3

Directive for air humidification in the supply, return and exhaust air sections of central HVAC systems. It gives an overview of various humidifier systems, and of criteria to take into consideration when selecting. Definition of requirements for the planning, installation, operation and maintenance of air humidifier systems.

Air velo	ocity class V	Efficien	cy parameter P	Efficiency parameter H				
Class	Velocity (m/s)	Class	Energy efficiency η _e 1-1 [%]	Class	Energy efficiency η _e 1-1 [%]			
V1	≤ 1.6	P1	≤ P _{m ref} * 0.85	H1	≥ 71			
V2	> 1.6 - 1.8	P2	≤ P _{m ref} * 0.90	H2	≥ 64			
V3	> 1.8 - 2.0	P3	≤ P _{m ref} * 0.95	H3	≥ 55			
V4	> 2.0 - 2.2	P4	≤ P _{m ref} * 1.00	H4	≥ 45			
V5	> 2.2 - 2.5	P5	≤ P _{m ref} * 1.06	H5	≥ 36			
V6	> 2.5 - 2.8	P6	≤ P _{m ref} * 1.12	H6	no requirement			
V7	> 2.8 - 3.2	P7	> P _{m ref} * 1.12	The values	apply for balanced mass flow rates.			
V8	> 3.2 - 3.6	$P_{mref} = (\Delta P)$	stat/450) ^{0.925} * (qv + 0.08) ^{0.95}	η _e = η _t *(1-	1 / ε)			
٧9	> 3.6	P _{m ref} [kV ∆P _{stat} [Pa	V] electrical power consumption] static pressure increase at fan	η _e [%] Energy efficiency η _t [%] temperature transfer rate (dry)				
		av m ³	/s] air volume flow rate	ε [-] perf	ormance rating			

Unit equipment and functions

The functions and unit types shown here are only examples of possible designs. Within the Menerga Air Group, we can build for you any combination you desire.

Unit options

The following overview shows a selection of possible unit options for systems in the swimming pool hall and comfort air conditioning ranges. Further options, options for other system types and special requests are possible at any time. Please contact your sales office with any questions.

Included as standard	
Optional	0
Optional at extra cost	
Deselectable	•

	Swimming pool hall air conditioning				all	Comfort air conditioning									
Unit series	19	23	29	38	39	52	54	56	58	59	62	64	66	68	76
Unit housing															
Gerätedeckel 50 mm / MB 50					\bullet							\bullet		\bullet	
Operating side, supply air, left or right	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Panel colour in RAL 7035 (light grey)															
Insulating material mineral wool or PUR foam for housing cover															
Housing cover with reinforced inside sheet panel															
Height-adjustable corner foot															
Unit base				ullet	ullet		ullet	ullet	ullet			ullet		lacksquare	ullet
Unit delivery in additional partial units ¹															
Delivery of the heat recovery system separately on a pallet for customer installation onsite															
Recuperator section can be separated horizontally															
Vertical separation				ullet	ullet		ullet	ullet	ullet			ullet		lacksquare	lacksquare
Additional inspection windows															
Switchboard															
Switch cabinet on the device	ullet	ullet	ullet	ullet	ullet	ullet	ullet	ullet	ullet		ullet	ullet		lacksquare	
Control panel for wall mounting										lacksquare			lacksquare		
connection flange															
Flexible duct connections	\bullet	lacksquare	lacksquare												
Air filter															
Filter categories and sizes optional															
Fan system															
Adaptation of the external pressing															
Handle protection in front of impeller and jet nozzle of the fans															
Air throttle system															
Recirculated air damper	ullet	ullet	lacksquare	ullet	lacksquare										
Outside air bypass damper in the unit						ullet	ullet	ullet	ullet	ullet					ullet
Exhaust air bypass damper in the unit															lacksquare
Recirculated air dehumidification sector															
Servomotor with emergency return and position feedback system															
Motor-actuated outside air/exhaust air dampers instead of dynamic dampers														lacksquare	
Supply air/return air - air flow path exchanged and motor-actuated outside air/exhaust air dampers															
Heat sector															
РНЖ	\bullet	lacksquare		\bullet					lacksquare						lacksquare
Adaptation of LPHW capacity															
LPHW pump controls for electronic pump	\bullet	ullet	\bullet	lacksquare	\bullet	ullet	\bullet	ullet	lacksquare	ullet					ullet
LPHW pump controls with contactor and bi-relay															
LPHW valve supplied loose for installation by the customer	\bullet	•	•												
Unit options

	Swimming pool hall air conditioning			Comfort air conditioning											
Unit series	19	23	29	38	39	52	54	56	58	59	62	64	66	68	76
Cooling sector															
PCW								П							П
Adaptation of PCW capacity						П									П
PCW pump controls for electronic pump						П									
PCW pump controls with contactor and bi-relay															
PCW valve supplied loose for installation by the customer						П	П	П							Π
Refrigeration system															
Refrigeration system selectable/deselectable															П
Cooling capacity control									•	•			•	•	
Adaptation of the refrigeration capacity									Π						
Refrigerant sub-cooler/fresh water heater				П											
Heat extraction to LPHW with separate WWC changeover valve				_					Π	П			П	П	
Reversible compressor refrigeration system															
Building heat pump switch for LPHW ²			П							_			_	_	
Adiabatic evaporative cooling								•	•						П
AdiabaticPro															
Installation of zinc sacrificial anode								П	П						
Flushing device for plate heat exchanger															
Control system	1					I									
vicomo ready												\bullet		\bullet	\bullet
Analogue modem for DDC															
Remote control panel	П	Π	П	П	Π	Π	Π	П	Π	П		Π	Π	Π	Π
Supply air temperature constant control programmed and available					_	\bullet								\bullet	•
Supply air duct thermometer probe supplied separate						Π	П	Π	Π	Π	Π	Π	Π	Π	Π
LPHW return flow temperature limitation programmed and available				•		•	•		•	•		•	•		•
Contact sensor supplied separately				Π	Π	Π	Π	Π	Π	Π	Π	Π	Π	Π	Π
Supply air pressure control programmed and available					_	•	•	•	•	•		•	•		•
Supply air differential pressure socket (C-Bus) supplied separately															
Return air pressure control programmed and available							•		•		•	•	•		•
Return air differential pressure socket (C-Bus) supplied separately															
Water-guided temperature control programmed and available		•	•	•	•	_			_						
Immersion sensor L = 55 o. L = 100 (C-Bus) supplied loose	Π	Π	Π	Π	Π										
Humidity shift in suspend mode		•	•	•	•										
Swimming break switch with separate return air combi-sensor IP54, supplied separately	П	П	п	П	П										
ModBus RTU interface for data transmission to BMS															
BACnet interface for data transmission to BMS															
Interface for Ospa Blue Control							_						_		
Unlocking of WEB server via ethernet in DDC															
Recirculating air control system															
CO ₂ -dependent recirculated air/outside air control system and/or flow rate control															
Heat extraction to pool water															
Pool water condenser															
Pool water condenser pump controls															
Basin water pump															
Pool water temperature control programmed and available															
Immersion sensor L = 55 o. L = 100 (C-Bus) supplied loose															
Plastic cone flow meter supplied loose for installation by the customer															

2 not in combination with pool water condenser

RESEARCH // **SPECIALS**

Unit type: customer specific

ALMA RESEARCH PROJECT, CHILE 60 telescopes in the Atacama desert that collect data on the origins of the universe.

MUSEUMS // GALLERIES

Unit type: Resolair **GERMAN MUSEUM SCHLEISSHEIM** The airfield displays an important aerospace collection on historic premises.

LOW-ENERGY BUILDINGS

Unit type: Adsolair **IBEROSTAR, PALMA DE MALLORCA** Modern headquarters with A-grade energy certification.

Unit type: Resolair **PRINCESS ELISABETH STATION** Belgian zero-emission research station with passive design. Location: Antarctica.

Unit type: Adsolair **URBIS, MANCHESTER** The glass building exhibits a journey of discovery through various world metropolises.

Unit type: Resolair **MENERGA SLOVENIA** Office building of Menerga Slovenia, winner of the Green Building Award 2008.

Unit type: Adsolair **ZERO ENERGY HOUSE, SEOUL**

Flagship project on the subject of energy efficiency, regenerative energy storage media and sustainability.

Unit type: Adsolair TRAUTMANNSDORF PALACE, MERAN Formerly the holiday residence of Empress Elisabeth of Austria, the palace now houses the South Tirolean State Museum for Tourism.

Unit type: Resolair ETRIUM, COLOGNE Passive office building with DGNB quality seal in gold.

THEATRES // **CULTURAL VENUES**

Unit type: Adsolair **GERMAN OPERA, DUESSELDORF** A charming jewel of the 50s at the edge of the old town.

HISTORICAL BUILDINGS

Unit type: Resolair, Hybritemp HERZOGIN ANNA AMALIA LIBRARY World-famous building with a stock of over 110,000 books.

SPORTING VENUES // MULTI-FUNCTIONAL HALLS

Unit type: Resolair **GROSS-OSTHEIM SPORTS HALL** Winner of the IOC/IAKS AWARD 2003 in silver.

Unit type: Resolair **TUSCHINSKI THEATER, AMSTERDAM** Since 1921, the high floral carpets of the luxurious film theatre have enticed visitors into a colourful fairytale world.

Unit type: Adsolair SCHLOSS BAD BERLEBURG Residence of the princely Sayn-Wittgenstein-Berleburg family.

Unit type: Adsolair, Hybritemp **OSIIEK MULTI-FUNCTIONAL HALL** One of the venues for the 2009 Handball World Championships, the largest athletics hall in Croatia.

Unit type: Dosolair **STUTTGART STATE THEATRE** The air conditioning for the choir practice hall required an absolutely "silent" variant.

Unit type: ThermoCond HILTON SA TORRE, MALLORCA 5-star luxury hotel from the 14th century.

Unit type: ThermoCond, AquaCond **KANTRIDA RIJEKA, CROATIA** Olympic swimming stadium with a completely opening roof structure.

PUBLIC SWIMMING POOL HALLS

Unit Type: ThermoCond, AquaCond, Dosolair, Adsolair, Resolair THERME LASKO, SLOVENIA Wellness park with 2,200 m² water area.

PRIVATE // HOTEL POOLS

Unit type: **ThermoCond PRIVATE SWIMMING POOL** Glorious wellness accommodation in a luxurious atmosphere.

HOTELS // RESTAURANTS

Unit type: **Sorpsolair MUNICH AIRPORT** Freight staff canteen of the second largest aerospace hub in Germany.

Unit type: **ThermoCond LIPPE POOL IN LÜNEN** First public passive building swimming pool hall in Europe.

Unit type: ThermoCond PRIVATE SWIMMING POOL The private swimming pool seems to float over the roofs of the city.

Unit type: ThermoCond, Resolair NATIONAL ZWEMCENTRUM DE

TONGELREEP, NETHERLANDS

The largest swimming centre in Europe serves amongst other things for hosting national competitions.

Unit type: **ThermoCond 5-STAR VILLA AM RUHRUFER HOTEL** Spa area of one of the smallest and most exclusive 5-star hotels in North Rhine-Westphalia, Germany.

Unit type: **Trisolair, ThermoCond HOTEL DOLLENBERG** 5-star superior hotel at 650 metres elevation, at Dollenberg in the Black Forest.

Unit type: **Trisolair, Dosolair, ThermoCond WEISSENHÄUSER BEACH** Holiday and leisure park with adventure playground on the Baltic Sea.

SCHOOLS // **UNIVERSITIES**

Unit type: Resolair ANGELASCHULE OSNABRÜCK Historical school complex with listed facade.

CLINICS // LABORATORIES

Unit type: Adsolair HAMBURG-EPPENDORF HOSPITAL Good climate in lecture theatre, seminar and work rooms.

MALLS // **SHOPPING CENTRES**

Unit type: Adsolair, Resolair **MERCATOR PESNICA, SLOVENIA** Shopping centre 5,000m² in size, winner of the Green Building Award 2011.

Unit type: Resolair **NECKARGMÜND SCHOOL CENTRE** The largest passive school building in Germany has 206 rooms, offering space for 1,250 high school students.

Unit type: Sorpsolair FREIBURG UNIVERSITY HOSPITAL Sorption-based air conditioning of the outpatient and emergency room areas.

Unit type: Resolair AUDI TERMINAL IN LUDWIGSBURG Generously dimensioned vehicle centre of Hahn Automobile.

Unit type: Adsolair, Resolair, Trisolair, Hybritemp

PASSAU UNIVERSITY

Over 100 Menerga systems create good climate at the youngest University in Bavaria.

Unit type: Dosolair, Adsolair **TLLV BAD LANGENSALZA** Thuringian State Office for Food Safety and Consumer Protection.

Unit type: Sorpsolair **TOYOTA FREY, SALZBURG** The "greenest" car dealer in the world was recently classified as "excellent" under BREEAM.

OFFICE BUILDING // ADMINISTRATION

Unit type: Adsolair, Resolair OTTO GROUP, HAMBURG This trading and services group is the second largest online trader in the world.

INDUSTRY //

ADEL

PRODUCTION FACILITIES

Unit type: Adsolair MAPAL, AALEN Headquarters of the manufacturer for precision tools.

DATA CENTRES // SERVER ROOMS

Unit type: Adcoolair BANCO SANTANDER, SPAIN Data processing centre with 16 MW total cooling capacity.

Unit type: Adsolair KÄRCHER CENTER, WINNENDEN

Sales centre and office building of one of the largest cleaning equipment manufacturers in the world.

Unit type: Adsolair STIHL, WAIBLINGEN This family company is active in over 160 countries, and is famous for power saws.

Unit type: **Hybritemp FREIBURG DISTRICT OFFICE** Air conditioning for the data processing centre, refrigeration capacity 59.1 kW.

Unit type: **Adsolair USM, MÜNSINGEN** The corporate office of the

The corporate office of the Swiss furniture manufacturer has been setting trends for 45 years.

Unit type: **Resolair TECHNO, BUBSHEIM** Specialist in the sale of turned parts, offices in Bubsheim near Stuttgart.

Unit type: **Adcoolair COMMUNICODE ESSEN** Communicode specialises in hosting webshops, e.g. of Deichmann.

THE MENERGA UNIT CODE

e.g. Resolair 64 12 01

Resolair	64	12	01
Name	Series	Installation size	Design

Series	Name	Function	Equipment	Design				
11	Drysolair	Air drying	Heat pump, recuperator					
14	Frecolair	Ventilation/cooling	Free cooling, compressor refrigeration system					
19	ThermoCond		Cross-counterflow heat exchanger					
23	ThermoCond		Cross-counterflow-cross heat exchanger					
29	ThermoCond	Indoor swimming pool	loor swimming pool Cross-counterflow heat exchanger, heat pump					
38	ThermoCond		Counterflow plate heat exchanger, volume flow reduction as required	91 Outdoor installation 91 Outdoor installation				
39	ThermoCond		Asymmetrical high-capacity heat exchanger, output-controlled heat pump, fresh water heater, volume flow reduction as required					
44	AquaCond	Heat recovery from waste water	0 WWHE: Cu FWHE: Cu 1 WWHE: Cu FWHE: Cu tin-plated 2 WWHE: Cu-Ni FWHE: Cu 3 WWHE: Cu-Ni FWHE: Cu tin-plated * WWHE=Waste Water Heat Exchanger * FWHE=Fresh Water Heat Exchanger					
52	Trisolair		Cross-counterflow-cross heat exchanger, air volume flow rate up to 5,000 m³/h					
54	Dosolair		Double plate heat exchanger, max. flow rates up to 52,200 m ³ /h					
56	Adsolair	Comfort air conditioning, recuperative heat	Double plate heat exchanger, adiabatic evaporative cooling, Optimum flow rates up to $52,200 \text{ m}^3/\text{h}$					
58	Adsolair	recovery	Double plate heat exchanger, adiabatic evaporative cooling, compressor refrigeration system, max flow rates up to 52,800 m ³ /h					
59	Trisolair		Cross-counterflow-cross heat exchanger, compressor refrigeration system, air volume flow rate up to 4,800 m ³ /h					
62	Resolair		Heat accumulator module, max. flow rates up to 4,300 m ³ /h					
64	Resolair		Heat accumulator module, max. flow rates up to 51,000 m ³ /h					
65	Resolair	Comfort and process air	Heat accumulator module, air flow rates up to 40,000 m³/h					
66	Resolair	tive heat recovery	Heat accumulator module, compressor refrigeration system, max. flow rates up to 4,300 m³/h	01 Indoor installation 91 Outdoor installation				
68	Resolair		Heat accumulator module, compressor refrigeration system, max. flow rates up to 51,000 m³/h					
72	Sorpsolair	rpsolair Double plate heat exchanger, adiabatic evaporative cooling, sorptive dehumidification, max. flow rates up to 14,900 m ³ /h						
73	Sorpsolair	conditioning	Double plate heat exchanger, adiabatic evaporative cooling, sorptive dehumidification, brine accumulator, max. flow rates up to 14,900 m ³ /h					
75	Adcoolair	Recirculating air cooling Free cooling, adiabatic evaporative cooling, compressor refrigeration system		-				
76	Adconair	Comfort air condition- ing, recuperative heat recovery						
97	Hybritemp	Cold water set Indirect free cooling, adiabatic evaporative cooling, efficiency-optimised compressor refrigeration system						
98	Hybritemp		Free cooling, adiabatic evaporative cooling, efficiency-optimised compres- sor refrigeration system					

Creating a good climate. For over 35 years. Worldwide.

Menerga GmbH Alexanderstraße 69 Muelheim an der Ruhr Germany

www.menerga.com info@menerga.com

Find your local sales office at www.menerga.com

Keep yourself updated on all news and new products by following us on www.menerga.com

